Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Khoirul Istiyani
"Dengan semakin banyak jumlah penderita penyakit diabetes melitus, maka perlu dikembangkan sediaan insulin yang baru untuk memperbaiki kekurangan dari sifat sediaan yang ada sekarang. Insulin umumnya tidak diberikan secara oral karena masalah bioavabilitas, degradasi oleh asam lambung, inaktivasi dan penghancuran oleh enzim proteolitik di usus, dan permeabilitas insulin yang rendah melewati epitel usus. Pada penelitian ini dilakukan pengembangan sediaan mikrokapsul insulin untuk sediaan oral, terutama untuk pengobatan pada penderita diabetes melitus tipe I. Mikrokapsul dibuat menggunakan metode emulsifikasi dengan penyalut natrium alginat dan kitosan. Parameter fisika dan kimia digunakan dalam mengevaluasi sediaan mikrokapsul, yaitu morfologi mikrokapsul, ukuran partikel, perolehan berat mikrokapsul, kadar air, efisiensi enkapsulasi dan profil pelepasan in vitro mikrokapsul. Penelitian menunjukan mikrokapsul yang dihasilkan pada metode ini tidak berbentuk bulat dan tidak sferis. Mikrokapsul alginat insulin yang dibuat memberikan kadar efisiensi antara 53,3 - 91,0%. Mikrokapsul alginat-kitosan insulin yang dibuat memberikan kadar efisiensi antara 61,9 - 93,4%. Mikrokapsul dengan penggunaan konsentrasi alginat yang 4% dan kitosan pada konsentrasi 0,3% memberikan hasil optimum pada formulasi yang menggunakan insulin 46,88 IU dalam efisiensi dan profil pelepasan secara in vitro karena tidak melepaskan insulin sampai jam ke 2 dalam larutan asam klorida pH 1,2 dan pelepasannya yang hampir 100 persen pada jam ke 1 dalam larutan buffer fosfat pH 6,8.

With the increase of the diabetes mellitus patients, it is necessary to develop a new dosage form of insulin for overcoming the disadvantage of the product available in the market now. Insulin is generally not delivered orally as they are poor bioavability, degradation by acidic environment of the stomach, inactivate and degradation by proteolytic enzymes in the gastrointestinal, low of permeation cross the intestinal epithelium intact. The purpose of this study is to develop an oral dosage form of insulin, especially for diabetes mellitus type I patients. Dosage form made by using microencapsulation technique. Insulin was encapsulated in alginate and chitosan microcapsule which prepare by emulsification method. Physical and chemical parameters used for the microcapsule evaluation were microcapsule morphology, partikel size, microcapsule mass, water content, encapsulation efficiency and in vitro release profile. The result for insulin encapsulation was obtained amorphous and non spherical shape, alginate microcapsule of insulin have efficiency between 53,3 - 91,0%, and alginatechitosan microcapsule of insulin have efficiency between 61,9 - 93,4%. Insulin encapsulation when sodium alginate 3% and chitosan 0,4% were used as coating material, have optimal result in formulation using 46,88 IU insulin in efficiency and in vitro release profile, because insulin not release until two hours in chlorida acid solution pH 1,2 and the release almost 100% in first hour in buffer phosphate solution pH 6,8."
Depok: Universitas Indonesia, 2008
S32728
UI - Skripsi Open  Universitas Indonesia Library
cover
Andara Asifa Yudiana
"Tumpahan minyak merupakan bentuk pencemaran lingkungan yang dapat disebabkan oleh aktivitas maritim berupa kegiatan downstream seperti operasi dan pengangkutan minyak dengan kapal tanker. Tindakan penanggulangan yang dapat dilakukan berupa pemberian sebuah surfaktan kimia berupa dispersan ke tumpahan minyak. Dispersan diberikan untuk mempercepat proses emulsifikasi minyak di air sehingga minyak terdispersi menjadi tetesan kecil sebesar kolom air. Efektivitas kinerja dispersan pada tumpahan minyak dipengaruhi oleh berbagai faktor seperti konsentrasi minyak, energi yang bekerja untuk mencampur dispersan dengan minyak berupa ombak, temperatur lingkungan dan jenis dispersan.
Dalam penelitian ini, memperlihatkan pengaruh dari variasi temperatur dan jenis dispersan terhadap efektivitas kinerja dispersan pada tumpahan minyak. Sampel minyak yang digunakan adalah crude oil dengan tipe MESLU dan sampel dispersan yang digunakan adalah MAXI CLEAN-2 dan NEO-CHEM M-405. Sumber pemanas yang digunakan adalah oven dan sumber pendingin yang digunakan adalah es batu yang ditaruh pada cooler bag.
Penelitian dilakukan dengan variasi temperatur lingkungan sebesar 16°C, 26°C dan 36°C. Waktu pengambilan sampel penelitian dilakukan selama 24 jam dengan pengambilan data dilakukan pada jam ke-3, ke-6 dan ke-24. Pengambilan sampel dilakukan pada lapisan permukaan, lapisan tengah dan lapisan dasar air. Sampel diuji dengan alat spectrophotometer UV-VIS pada gelombang 340 nm, 370 nm dan 400 nm.
Hasil penelitian ini mendapatkan bahwa dispersan dapat bekerja dengan efektif pada temperatur 26°C - 36°C. Nilai absorbansi cahaya tertinggi yaitu pada lapisan permukaan jenis dispersan soluble di air pada temperatur 26°C dengan luas area absorbansi 82.15 abs, namun luas area absorbansi cahaya terkecil terjadi pada temperatur 16?C sebesar 25.72 abs. Luas area total absorbansi cahaya terbesar berada pada temperatur 26°C dengan jenis dispersan soluble di air yaitu mencapai 133.49 abs.
Hal ini membuktikan bahwa semakin tinggi temperatur hingga suatu titik tertentu maka kinerja dispersan semakin efektif karena menurunnya viskositas dari minyak dan dispersan. Selain itu, jenis dispersan dapat mempengaruhi kestabilan dari emulsi, semakin kecil konsentrasi pengemulsi maka emulsifikasi yang terjadi semakin stabil.

Oil spills is an environmental pollution that can be caused by maritime activities in the form of downstream activities such as operations and transportation of oil ship tankers. Mitigation actions that can be done is by pouring a chemical surfactant such as dispersant to an oil spills. Dispersant is given to speed up emulsification of oil in a water so it may disperse into a small droplets of water column. Dispersant effectiveness on oil spills can be influenced by various factors such as the concentration of oil, a mixing energy to mix dispersant and oil which provided by the waves, environmental temperatures and types of dispersant.
This research shows the influence of the temperature variations and types of dispersant on the effectiveness of the dispersant performance on oil spills. Samples of the oil that is used is MESLU crude oil and sample of dispersan that is used is MAXI CLEAN 2 and NEO CHEM M 405. The heating source used is an oven and the source of refrigerant that is used is the ice cubes that placed on a cooler bag.
The research is done by varying environmental temperature at 16°C, 26°C and 36°C. Sampling was done for 24 hours while taking data at 3, 6 and 24 hours of oil disperse. Sample is taking on the top, middle and base layer of water. Samples tested with the spectrophotometer UV VIS in the wavelength at 340 nm, 370 nm and 400 nm.
This research found that dispersant can work effectively in temperatures range at 26°C 36°C. The highest value of light absorbance is on the top layer of dispersant that soluble in a water at temperature about 26°C with absorbance area 82.15 abs and the smallest light absorbance occurs on 16°C temperatures with absorbance area 25.72 abs. The largest area light absorbance is found at temperatures 26°C with type of dispersant that soluble in water with area 133.49 abs.
This proves that the higher temperature up to a certain point makes dispersant performance more effective because the decreasing viscosity of the oil and dispersant. In addition, dispersant types can affect the stability of emulsion, the smaller concentration of emulsifier makes emulsification more stable.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69789
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kimberly Roselind
"Astaxanthin merupakan senyawa antioksidan kuat tidak larut air yang digunakan secara komersial dalam berbagai aplikasi, seperti kosmetik, makanan, nutrasetika, maupun farmasi. Astaxanthin alami yang berasal dari H. pluvialis tersedia dalam bentuk oleoresin, sehingga membatasi kegunaannya dalam pembuatan produk. Penelitian ini menggunakan konsentrat protein whey (WPC) dalam pembuatan nanopartikel oleoresin astaxanthin sebagai strategi meningkatkan ketercampuran astaxanthin dalam air, menggunakan metode emulsifikasi-evaporasi solven. Emulsifikasi dilakukan melalui ultrasonikasi dengan mencampurkan larutan WPC dalam air dan oleoresin astaxanthin dalam etil asetat, kemudian dialirkan gas nitrogen untuk menguapkan etil asetat. Penyemprotan kering dilakukan untuk memperoleh serbuk nanopartikel astaxanthin. Nanopartikel yang diperoleh kemudian dikarakterisasi untuk menilai kualitas nanopartikel dan aktivitas antioksidannya menggunakan metode ABTS. Metode yang digunakan menghasilkan nanopartikel astaxanthin dengan konsentrat protein whey yang dapat didispersikan dalam air, dengan ukuran rata-rata partikel sebelum pengeringan semprot 181,7 ± 1,04 nm, PDI 0,289 ± 0,03, dan D50 129,3 ± 27,5 d.nm. Setelah pengeringan semprot, ukuran rata-rata partikel meningkat menjadi 766,2 ± 13,2 nm, D90 623,3 ± 16,6 d.nm, dan PDI 0,695 ± 0,13. Nanopartikel tersebut memiliki efisiensi penjerapan 94,58% serta menunjukkan aktivitas antioksidan yang sangat kuat, dengan IC50 6,60 ppm. Spektrum inframerah NP menunjukkan kemiripan dengan profil konsentrat protein whey, yaitu adanya band pada 1600-1650 cm-1 yang menunjukkan adanya amida primer, dan band antara 1500 - 1550 cm-1 menunjukkan adanya amida sekunder. Hasil penelitian menunjukkan bahwa pembuatan nanopartikel oleoresin astaxanthin berbasis konsentrat protein whey dapat meningkatkan dispersibilitas astaxanthin dalam air.

Astaxanthin is a strong antioxidant compound commercially used in various applications, such as cosmetics, food, or pharmaceutics. Natural astaxanthin derived from H. pluvialis is available in the form of oleoresin, limiting its use in products. This study uses whey protein concentrate (WPC) in making astaxanthin oleoresin nanoparticles as a strategy to increase astaxanthin dispersibility in water, through emulsification-evaporation method. Emulsification was done via ultrasonication by mixing a solution of WPC in water with astaxanthin oleoresin in ethyl acetate, then using nitrogen gas to evaporate the ethyl acetate. Spray drying was carried out to obtain astaxanthin nanoparticle powder. The nanoparticles obtained were characterized to assess the quality and antioxidant activity using ABTS. Results: water-dispersible astaxanthin nanoparticles were obtained, with a mean particle size before spray drying of 181.7 ± 1.04 nm, D50 129.3 ± 27.5 d.nm, and PDI of 0.289 ± 0.03. After spray drying, mean particle size increased to 766.2 ± 13.2 nm, PDI 0.695 ± 0.13, and D90 623.3 ± 16.6 d.nm. The nanoparticles had an entrapment efficiency of 94.58% and exhibited very strong antioxidant properties, with an IC50 value of 6.60 ppm. Infrared spectrum showed likeness to whey protein concentrate, namely the presence of a band at 1600-1650 cm-1 indicating the presence of primary amides, and the band at 1500-1550 cm-1 for secondary amides. The results show that astaxanthin oleoresin nanoparticles with WPC are able to increase the dispersibility of astaxanthin in water."
Depok: Fakultas Farmasi Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyah Paramawidya Kirana
"ABSTRAK
Nanoemulsi memiliki peran penting dalam industri kosmetik, farmasi, dan makanan, seperti untuk mengenkapsulasi senyawa bioaktif yang berkhasiat terhadap kesehatan. Salah satu senyawa bioaktif yang bersifat lipofilik dan memiliki solubilitas rendah dalam air adalah mangostin. Mangostin merupakan turunan xanthones yang terkandung pada kulit manggis Garcinia mangostana L. dengan sifat antioksidan, antibakteri, hingga kemopreventif yang baik. Untuk memaksimalkan aplikasi mangostin, maka dibuatlah dalam suatu sistem nanoemulsi, yang berperan sebagai penghantar senyawa bioaktif. Dalam penelitian ini, sediaan nanoemulsi dengan ekstrak mangostin dipreparasi dengan metode energi tinggi ET high shear stirring dan energi rendah ER emulsifikasi spontan yang bertujuan untuk aplikasi topikal. Nanoemulsi yang stabil tercapai saat rasio massa minyak-air-surfaktan adalah 1: 1,42: 6,34 untuk metode energi tinggi dan rendah, serta 1: 2,28: 4,03 untuk metode energi tinggi dan 1: 1,42: 6,34 untuk metode energi rendah dengan penambahan 0,1 xanthan gum. Sampel yang dipreparasi dengan kedua metode tersebut memiliki estimasi stabilitas sebesar 46,7 ndash; 93 , atau kurang dari 1 tahun setelah uji akselerasi. Selain itu, sampel nanoemulsi memiliki ukuran droplet yang berkisar antara 220 ndash; 353nm serta dan efisiensi enkapsulasi mangostin antara 42 ndash; 57 . Untuk aplikasi topikal, pengamatan dilakukan dengan sel difusi Franz untuk mengamati kemampuan sediaan emulsi mempenetrasi lapisan kulit. Hasil menunjukkan bahwa sampel emulsi ET dan ER dengan penambahan xanthan gum memiliki laju dan jumlah mangostin terpenetrasi yang paling tinggi.

ABSTRACT
Nanoemulsions have an important role in cosmetics, pharmaceutical, and food industries, especially for encapsulating bioactive compounds for wellness. An example of a lipophilic bioactive compound with low water solubility is mangostin. Mangostins are derivatives of xanthones, which are isolated from mangosteen rind Garcinia mangostana L. that shows good antioxidant, antibacterial, and chemopreventive properties. To maximize the applications of mangostins, a nanoemulsion acting as a bioactive carrier was made to encapsulate mangotsins. In this research, nanoemulsions containing mangostin extract was prepared by high energy HE method using high shear stirring and low energy LE method using spontaneous emulsification for topical applications. Stable nanoemulsions were obtained when the oil surfactant water mass ratios are 1 1,42 6,34 for high and low energy method as well as 1 2,28 4,03 for high energy method and 1 1,42 6,34 for low energy method, both added with 0,1 xanthan gum. Samples prepared with both methods have an estimated stability of 46,7 ndash 93 , or less than 1 year after evaluated by accelerated stability testing. Moreover, nanoemulsion samples have droplet size between 220 ndash 353nm and encapsulating efficiency between 42 ndash 57 . For topical applications, observations of nanoemulsions rsquo ability to penetrate the skin membrane were performed with Franz diffusion cell. The results show that emulsions prepared with HE and LE method containing xanthan gum have the highest cumulative penetration and flux rates of mangostin. "
2017
S68139
UI - Skripsi Membership  Universitas Indonesia Library