Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Setyawan Pratama
Abstrak :
Penelitian analisis sentimen sudah banyak dikaji untuk berbagai bahasa, termasuk bahasa Indonesia. Namun sayangnya, belum terdapat penelitian benchmarking analisis sentimen untuk teks berbahasa Indonesia. Hal ini menyebabkan kesulitan bagi para peneliti untuk mendapatkan informasi mengenai metode klasifikasi dengan performa terbaik pada saat ini. Dengan adanya permasalahan tersebut, penelitian ini dilakukan dengan tujuan membantu memberikan arahan untuk penelitian sentimen analisis dalam bahasa Indonesia. Untuk dapat memberikan arahan, penelitian ini berusaha untuk membandingkan pendekatan klasifikasi sentimen rule-based, machine learning dan deep learning serta teknik ekstraksi fitur untuk mendapatkan skenario analisis sentimen terbaik. Berdasarkan hasil eksperimen penelitian, ditunjukkan bahwa klasifikasi terbaik dicapai oleh deep learning, disusul dengan metode klasifikasi machine learning dan rule-based. Pencapaian nilai terbaik pada klasifikasi menggunakan deep learning diperoleh menggunakan model BERT. Untuk klasifikasi menggunakan machine learning, didapatkan bahwa nilai F1-Score terbaik diperoleh saat digunakan metode klasifikasi Logistic Regression dengan teknik ekstraksi fitur kombinasi unigram dengan leksikon kombinasi. Sedangkan untuk klasifikasi rule-based nilai F1-Score tertinggi didapatkan menggunakan metode klasifikasi adjektiva. ...... Currently, there have been many kinds of research done on sentiment analysis. However, there are no papers on sentiment analysis benchmarks for the Indonesian language. Due to the absence of such research, it became difficult for researchers to get information about classifiers with the best performance. Because of this problem, this research is conducted so it would be easier for researchers to get information and direction on doing Indonesian sentiment analysis. In this paper, we held an experiment comparing sentiment classification using rule-based, machine learning, and deep learning and comparing feature extraction techniques to achieve the best sentiment analysis scenario. Based on our experiments in this research, prediction using deep learning classification gave the best result compared to machine learning and rule-based classification. Using deep learning classification, the BERT model is used to get the best result. The best F1-Score for machine learning classification is obtained using a Logistic Regression classifier alongside a combination of unigram and combined lexicon feature extraction. Meanwhile, the best F1-Score for the rule-based classification is obtained using the Adjective classification method
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bhirawa Bagus Pratama Putra
Abstrak :
Dengan bertambahnya populasi di Bumi ini, meningkat juga kebutuhan pangan dalam kehidupan. Karena itu, dunia agrikultur diharuskan dapat berjalan dengan efektif dan aman dari ancaman. Meski begitu, pengawasan perkebunan tidak dapat dilakukan oleh manusia terus-menerus, sehingga lahan tersebut dapat diserang oleh gulma, yaitu hama tanaman yang tumbuh dan mengambil nutrisi tanah yang membantu pertumbuhan tanaman agrikultur. Dengan adanya pertimbangan ini, dirancang sistem deteksi objek yang menggunakan ekstraksi objek yang dapat mengambil fitur dari dedaunan tanaman dan membandingkannya dengan fitur dedaunan gulma. Fitur yang diambil berupa bentuk dari daun, dilihat melalui ekstraksi fitur titik ujung suatu objek melalui Oriented FAST and Rotated BRIEF (ORB), dan ekstraksi fitur tekstur objek melalui Local Binary Pattern (LBP). Kedua ekstraksi fitur ini digabungkan melalui metode normalisasi dan z-score, dan akan dijalankan dalam bahasa Python. Evaluasi dilakukan dengan membandingkannya dengan bila sistem dijalankan dengan ORB sendiri dan LBP sendiri, melalui akurasinya. Selain itu, dilakukan evaluasi terhadap SVM untuk klasifikasi citra, dengan menentukan akurasi mana yang lebih tinggi di antara SVC dengan tiga kernel linear, RBF, dan polynomial, atau LinearSVC. Hasil penelitian menunjukan bahwa model deteksi objek menggunakan ORB saja memiliki akurasi lebih tinggi dengan nilai akurasi 0.912 dibanding dengan model deteksi objek dengan LBP yang memiliki akurasi 0.808. Untuk evaluasi model klasifikasi SVM yang sudah menggunakan ekstraksi fitur LBP, SVC dengan kernel linear dan RBF memiliki akurasi yang tinggi, di mana SVC dengan kernel linear memiliki nilai 0.77, dan dengan RBF 0.79. Namun, peningkatan dari akurasi SVC dengan RBF tidak dapat menandingi waktu eksekusi SVC dengan kernel linear yang memiliki nilai 2.62 ms, bila dibanding dengan kernel RBF yang mencapai 3.76 ms. ......, With the increase in Earth’s population, the daily need for food also rises. Due to this, the world of agriculture must run effectively and safe from any threats. However, constant observations of plantations by humans are not possible, leading to the fields to be overgrown by weeds, a pest in the form of plants that grow and take the nutrients of planted crops. With this in consideration, a detection system utilizing feature extraction algorithms designed that is capable of extracting the features, which are shapes and textures, of leaves and weeds. Shapes are taken into account by edge-based feature extraction model, Oriented FAST and Rotated BRIEF(ORB), while textures are analyzed by binary-based Locab Binary Pattern (LBP). These two features are joined using normalization and z-score method, and is run using Python. Evaluation is done by comparing the system with two others using only ORB and LBP, through its accuracy in the system. Other than that, Evaluation will be done on SVM-based image classification, by deciding which of the SVM with three different kernels, linear, RBF and polynomial, and LinearSVC, has the highest accuracy. After evaluation, it is found that ORB is a better feature extraction algorithm within the system, with an accuracy of 0.912, followed by LBP with accuracy of 0.808. For evaluation on SVM with LBP as feature extraction algorithm, SVC with linear and RBF kernels are two of the highest classification models in term of accuracy, with SVC with linear kernel having 0.77 in value, while SVC with RBF kernel having 0.79. However, the 0.02 increase in SVC with RBF kernel’s accuracy is negligible, due to having a longer execution time of 3.76 ms, while SVC with linear kernel has 2.62 ms, making SVC with linear kernel a better choise due to efficiency.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nagisa Eremia Anju
Abstrak :
Tenaga kerja kesehatan pada masa pandemi bekerja sebagai garda terdepan yang memiliki resiko tertinggi tertular virus corona. Sampai pada hari ini, perawatan dan pemeriksaan kondisi vital pasien COVID-19 masih banyak dilakukan dengan kontak langsung minimal sebanyak empat kali dalam sehari. Hal ini berisiko meningkatkan penyebaran virus hingga menurunkan jumlah tenaga kerja kesehatan. Sampai pada saat ini, hampir seluruh rumah sakit masih menggunakan sphygmomanometer tradisional dengan cuff yang membutuhkan bantuan tenaga medis ataupun tanpa bantuan, namun pengukuran dilakukan secara invasif. Oleh karena itu, dibutuhkan suatu alat yang dapat memonitor kondisi vital pasien tanpa kontak langsung terutama dalam mengukur tekanan darah dan bersifat noninvasif. Penelitian ini bertujuan untuk membuat suatu algoritma pengolahan sinyal plethysmography berbasis ekstraksi fitur dan machine learning untuk prediksi tekanan darah. Dengan menggunakan sensor MAX30102 dan ESP32, sinyal PPG yang didapat dari jari akan dilakukan pre-processing dengan menenerapkan baseline fitting, kemudian deteksi puncak, hingga empat fitur utama sinyal PPG, yaitu systolic peak, diastolic peak, dicrotic notch, dan foot dapat diekstrak. Data ekstraksi fitur sinyal PPG secara ­real-time ini digabungkan menjadi satu dataset dan dimasukkan ke dalam machine learning untuk diprediksi nilai tekanan darahnya. Evaluasi hasil prediksi tekanan darah menunjukkan nilai Mean Absolute Error yang kecil, yaitu 1,56/2,35 yang masih diterima oleh standar ISO 81060-2:2013 sehingga dapat dijadikan fundamental untuk sistem pengukuran tekanan darah noninvasif. ...... Health workers during the pandemic act as the frontliner who have the highest risk of contracting the coronavirus. Most of the treatment and examination of the vital condition of COVID-19 patients is carried out with direct contact at least four times a day. This increases the risk of virus spreading, moreover reducing the number of health workers. To date, almost all hospitals still require medical assistance to measure blood pressure using the traditional cuff sphygmomanometer or without assistance however, the measurements are carried out invasively. Therefore, a device that can monitor the patient's vital condition without direct contact, especially in measuring blood pressure and non-invasive is needed. This thesis aims to develop a plethysmography signal processing algorithm based on feature extraction and machine learning for blood pressure prediction. By using the MAX30102 and ESP32 sensors, the PPG signal obtained from the finger will be preprocessed by applying a baseline fitting and peak detection, thus the four main features of the PPG signal, namely systolic peak, diastolic peak, dicrotic notch, and foot can be extracted. This real-time PPG signal feature extraction data is then combined into a single dataset and by using machine learning, blood pressure values are predicted. Evaluation of the blood pressure predictions shows a small Mean Absolute Error value, 1.56/2.35 which meets the ISO 81060-2:2013 standard. Hence, the results demonstrate the applicability of the proposed algorithm in predicting blood pressure and can be developed as a noninvasive real-time blood pressure measurement system in the future.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ida Nurhaida
Abstrak :
Batik adalah kain yang dihias dengan menggunakan teknik dekorasi tekstil yang memanfaatkan malam sebagai perintang warna. Seni batik telah dikembangkan sejak lama di beberapa bagian negara Asia termasuk Indonesia. Pemanfaatan teknologi informasi dalam bentuk metode deteksi motif batik dapat mendukung perkembangan industri kreatif karena sistem ini nantinya dapat dijadikan sebagai acuan bagi perkembangan elemen-elemen desain motif batik. Fokus penelitian ini adalah deteksi motif batik yang memiliki karakteristik kemunculan yang berulang, multi translasi, multi skala, dan multi orientasi. Domain batik dengan pola geometrisnya dipilih sebagai area implementasi terkait dengan karakteristik motif batik yang bersifat simetri, kemunculan obyek yang berulang di beberapa lokasi dalam satu bidang kain, dan sering kali obyek-obyek motif batik tersebut telah mengalami perubahan skala ataupun perubahan orientasi. Kondisi tersebut dapat menyebabkan adanya kesalahan deteksi dan kesalahan klasifikasi. Metode deteksi motif batik yang diusulkan menggunakan fitur SIFT dan serangkaian post processing berupa voting Hough Transform, clustering, smoothing, deteksi peak, penambahan jumlah minimum voting dan penggabungan konfigurasi yang memiliki nilai berdekatan. Pada citra kueri dilakukan ekstraksi fitur menggunakan SIFT. Deskriptor yang dihasilkan dicocokkan dengan deskriptor citra template pada basis data. Pada penelitian ini diusulkan metode pencocokan keypoint yang berbeda dengan metode standar pencocokan SIFT. Seluruh pasangan keypoint diurutkan mulai dari yang memiliki jarak terdekat hingga yang paling jauh. Selanjutnya ditentukan nilai ambang jumlah keypoint sebesar 1%, 5% dan 10%. Pasangan keypoint hasil pencocokan dilakukan voting menggunakan Hough Transform terhadap konsistensi pose geometris obyek citra kueri. Sehubungan dengan permasalahan yang dihadapi dalam deteksi motif batik, proses pencocokan deskriptor citra berupa keypoint yang diperoleh melalui ekstraksi fitur, harus dapat dilakukan dengan baik sehingga kualitas deteksi motif batik menjadi lebih baik. Pada penelitian ini dikembangkan pula beberapa metode deteksi obyek yang berfungsi sebagai pengambil keputusan terhadap keberadaan obyek tertentu pada citra kueri. Metode deteksi obyek ini bekerja dengan cara mengambil hingga maksimum 80% dari nilai peak tertinggi yang terbentuk pada ruang Hough (MDOTresh), penggunaan nilai ambang berdasarkan rumusan rata-rata nilai peak yang terendah dan peak yang tertinggi (MDOAverage), penentuan nilai k berdasarkan nilai-nilai peak tertinggi sesuai dengan jumlah obyek yang terdapat pada groundtruth (MDOTopk), mengambil konfigurasi pada peak yang memiliki minimum nilai sebesar 3 voting pada setiap konfigurasi luaran ruang Hough (MDOMin), penentuan representasi obyek berdasarkan keluaran clustering DBSCAN (MDOScan), dan melakukan proses smoothing menggunakan filter Gaussian pada hasil deteksi dengan jumlah minimum voting sebanyak 3 buah (MDOGauss). Kehandalan metode dalam melakukan deteksi diindikasikan dengan ketepatan dalam menentukan jumlah obyek yang terdapat pada citra kueri dan mampu mengenali motif batik walaupun telah mengalami transformasi geometris melalui perpindahan posisi, perbedaan skala, dan perubahan orientasi. Berdasarkan hasil yang telah diperoleh, metode deteksi motif batik untuk data citra kueri dengan obyek tunggal, kombinasi translasi, skala, dan orientasi mencapai nilai kinerja maksimum 95.28% menggunakan MDOTresh, sedangkan pada citra kueri dengan obyek tunggal dan variasi noise mencapai 100% melalui MDOTresh, MDOAverage, dan MDOTopk. Hal ini menunjukkan bahwa metode deteksi motif batik mampu menangani obyek tunggal dengan berbagai kondisi. Pada deteksi motif batik dengan multi obyek, multi translasi, multi skala dan multi orientasi capaian maksimum kinerja metode usulan adalah 92.13%, sedangkan untuk citra kueri dengan multi obyek, multi translasi, multi skala, multi orientasi, dan variasi noise diperoleh capaian kinerja 89.89%. Keduanya diperoleh melalui pendekatan MDOGauss. Pada kondisi ini, penambahan jumlah obyek motif pada citra kueri menyebabkan bertambahnya jumlah obyek yang tidak berhasil dideteksi. Kasus selanjutnya adalah deteksi obyek motif batik dengan multi motif, multi obyek, multi skala, dan multi orientasi dengan luaran ruang Hough berupa jumlah voting absolut mencapai 96.09% untuk MDOTresh. Transformasi geometris pada obyek motif batik berakibat penurunan kontras citra sehingga berpengaruh pada jumlah voting yang dihasilkan. Untuk komposisi motif teratur dengan jumlah maksimum 16 obyek motif batik untuk motif sejenis mendapatkan hasil 100% melalui MDOAverage, sedangkan untuk multi motif 92.59% melalui pendekatan MDOTresh dan MDOAverage. ......Batik is a fabric printed design of hand-printing textiles by coating with wax. Batik has been developed since a long time in various countries including Indonesia. Nowadays, information technology is being utilized in recognizing batik motif. Therefore, the development of batik motif detection system is expected to support creative industries since the system can be used as a reference for the development pattern design. This study proposes an object recognition system for batik motif based on clustering Scale Invariant Features Transform (SIFT) features in Hough space. Our principal objective is to verify how many instances of the same object to our method detects accurately, when the object motif is posed in different positions, orientations, and scales. The geometric patterns domain is being selected regarding the characteristics of batik motifs. Batik motifs have symmetrical property and repeated in multiple locations. In addition, the objects of batik motif may be changed in terms of scale and orientation. The proposed method in this research consists of the feature extraction process using SIFT and post processing, namely voting Hough Transform, clustering, smoothing and peak detection. The keypoints from query image and the keypoints from template are matched with comparing the Euclidean distance of each keypoints descriptor in query image to all keypoint descriptors in template image. In this study we proposed a new matching keypoints method. All matched keypoints will be sorted from the closets distance to the farthest distance. Then, we determine the number of matched keypoint that will be used in the next process through the threshold 1%, 5%, and 10%. The similarity of primitive pattern and the occurrences of a motif in different location, scale and orientation will interfere the detection process. Consequently, the SIFT local feature representation must be performed well in terms of feature detection and matching. In this study, several object detection methods are proposed as well based on object’s representation resulted from the voting process in Hough space. Object detection method using thresholding (MDOTresh) is taking 80% of maximum peak value, while object detection method with average threshold (MDOAverage) picks the mean value of minimum and maximum peak in the Hough space. Object detection method Top k (MDOTopk) determines k number of objects from the highest peaks found in the Hough space based on the number of objects in ground truth. Object detection method based on Minimum Voting (MDOMin) considers the voting configurations which have a certain number of votes. In this study the minimum number of votes is tuned to 3 as a valid configuration. Object detection method based on DBSCAN (MDOScan) determines the representation of the object from output clustering. Object detection method using Minimum Voting + Gaussian (MDOGauss) implements smoothing process using Gaussian filter for the output configurations which have a minimum number of votes as 3. The reliability of batik motif recognition system is indicated by the ability of the system to find the number of object motif contained in query image and to classify the object motif into one of several batik motif classes even though the objects motif have undergone a geometric transformation. The evaluation of the proposed method is employing several data sets. Based on the evaluation result using query images with a single object, combination of translation, scale and orientation, object detection system MDOTresh gained balanced score 95.28%, while for the query image with a single object and scale variation of noise reached 100% through MDOTresh, and MDOAverage. It is apparent that the recognition system is capable of dealing with a single object with a various conditions. In recognition process for query image with multiple occurrences object, multi translation, multi scale and multi orientation, the highest performance is 92.13%, whereas for the image query with multi object, multi translation, multi-scale, multi- orientation, and variations in noise yielded 89.89%. Both are obtained through MDOGauss approach. In this case, increasing the number of object motif in the query image, a greater number of incorrect detections are obtained. The next case is the object motif recognition from query images with multi motif, multi object, multi scale and multi orientation. This data set has 2 outputs from Hough space namely absolute voting number and normalized voting number. The absolute voting number outputs achieved the best performance at 96.09% for the MDOTresh, while the normalized voting number gained 36.92% for MDOGauss. Geometric transformations on the object motif will be decreased contrast of object in the query image so that affected the number of voting resulted. The last data set is a regular texture, composition of the object motif with a maximum numbers are 16 objects. The best performance is 100% for homogeneous motif achieved from MDOAverage, while for multi motif yielded 92.59% achieves from MDOTresh and MDOAverage as the best.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Regina Lionnie
Abstrak :
Sistem pengenalan wajah yang menggunakan pendekatan klasik sejauh ini belum dapat memberikan hasil optimal jika dihadapkan pada tantangan oklusi. Tantangan oklusi yang dikaji pada penelitian ini adalah saat wajah menggunakan masker. Jika seseorang menggunakan aplikasi sistem pengenalan wajah dengan harus membuka masker terlebih dahulu di tempat umum tentunya sangat berbahaya untuk keselamatan dan kesehatan semua pihak. Sehingga dibutuhkan sistem pengenalan wajah yang memiliki performa sistem yang tinggi dengan tantangan oklusi masker. Penelitian ini membangun sistem pengenalan wajah bermasker dengan pendekatan holistic dan partial face. Metode ekstraksi fitur yang digunakan adalah penggabungan metode kurvatur yang menggunakan turunan parsial orde satu dan dua dengan metode analitik seperti gray level co-occurrence matrix (GLCM) dan multi-resolution analysis (MRA) seperti transformasi wavelet diskrit (DWT), scale-space (SS) dan wavelet packet transform (WPT). Pada penelitian ini juga ditemukan kriteria baru (keterbaruan penelitian) yang dinamakan curvature best basis (CBB) untuk memilih basis pada algoritma best basis di dalam WPT. Kriteria baru pemilihan basis terbaik bersifat dinamis dan menggunakan nilai tertinggi dari ukuran statistik standar deviasi dari kurvatur rerata pada koefisien wavelet. Basis terbaik bekerja sebagai fitur terekstraksi yang bekerja di dalam sistem pengenalan. Penelitian ini dievaluasi menggunakan dataset RFFMDS v1.0, RFFMDS v2.0 EYB, dan UBIPr. Hasil penelitian menunjukkan bahwa sistem pengenalan wajah dengan tantangan oklusi masker berhasil dibangun menggunakan pendekatan holistic dengan akurasi pengenalan sistem sebesar 98,11% dan dengan pendekatan partial face dengan akurasi sebesar 98,80%. Kedua hasil akurasi terbaik ini diperoleh dengan metode curvature best basis. Performa sistem pengenalan yang menggunakan metode curvature best basis dengan pendekatan holistic maupun partial face menunjukkan performa tertinggi dibandingkan dengan performa penelitian sebelumnya. ......The face recognition system has not been able to produce satisfactory results when it applies classical approach to handle occlusion problems. This research evaluated masked face as the occlusion problem. If someone wants to use the face recognition system, he or she needs to take off the mask to accurately use the device. This becomes a risk for the safety to all party. The needs to have a stable high performance face recognition system has arisen. This research built the face recognition system with two approaches, holistic approach and partial face approach. The feature extraction method was combination of curvature of the first and second order of partial derivative and analytical methods such as gray level co-occurrence matrix (GLCM) and multi-resolution analysis (MRA) of discrete wavelet transform (DWT), scale-space (SS), and wavelet packet transform (WPT). A new dynamic criterion inside WPT has been proposed using the highest standard deviation from the mean curvature of wavelet coefficients. The single selected best basis works as extracted feature inside recognition system and it is called curvature best basis. The recognition system was evaluated using RFFMDS v1.0, RFFMDS v1.0 EYB, and UBIPr datasets. The results showed that the accuracy of the holistic approach was 98,11% and the accuracy of the partial face approach was 98,80% for the masked face recognition system. Both results derived from the proposed curvature best basis. The recognition system’s performance with curvature best basis overcome the results from previous works.
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ernia Susana
Abstrak :
Photoplethysmography (PPG) merupakan sinyal penting yang mengandung banyak informasi fisiologis tentang kesehatan jantung dan dapat digunakan untuk mengklasifikasikan kadar glukosa darah non-invasif (BGL). Meskipun demikian, distorsi kebisingan dan gerakan dapat dengan mudah mengkontaminasi sinyal PPG, sehingga berpotensi menghasilkan data berkualitas rendah. Masalah tambahan muncul dari fakta bahwa sifat gelombang PPG bervariasi karena variasi elastisitas dinding pembuluh darah dan kekentalan darah, yang dapat mengakibatkan ketidakakuratan pengukuran. Meskipun beberapa metode tersedia untuk meningkatkan kualitas sinyal PPG, algoritmanya rumit dan tidak selalu menghasilkan akurasi yang tinggi. Kami telah mengembangkan teknik ekstraksi fitur menggunakan analisis frekuensi waktu (TFA) yang menyediakan spektogram, frekuensi sesaat, dan entropi spektral yang dapat menjamin kualitas sinyal. Penelitian kami menggunakan memori jangka pendek jangka panjang dua arah (BLSTM) berdasarkan kebutuhan akan model yang secara berkala dapat beradaptasi dengan perubahan karakteristik PPG. Kami mengusulkan menggabungkan TFA dengan model BLSTM yang dapat mengurangi waktu pelatihan sekaligus meningkatkan akurasi. Metode yang kami usulkan mengurangi titik data pada sinyal PPG dari awal 2100 menjadi hanya 64, secara signifikan mengurangi waktu pelatihan dari 239 menit 34 detik menjadi 4 menit 4 detik. Model memiliki akurasi 94,1%, sensitivitas 100%, spesifisitas 89,5%, dan skor F1 94,5%. Metode yang kami usulkan mencapai akurasi tinggi dan janji luar biasa dengan hanya mengandalkan data PPG mentah dalam klasifikasi BGL. ......Photoplethysmography (PPG) is an important signal that contains much physiological information about cardiovascular health and can be used to classify non-invasive blood glucose levels (BGL). Nonetheless, noise and motion distortions can readily contaminate PPG signals, potentially resulting in low-quality data. An additional issue arises from the fact that the PPG wave properties vary due to variations in the elasticity of the blood vessel wall and blood viscosity, which can result in measurement inaccuracies. While several methods are available to improve the quality of PPG signals, the algorithms are complex and do not always produce high accuracy. We have developed a feature extraction technique using time-frequency analysis (TFA) that provides spectrograms, instantaneous frequencies, and spectral entropies that can guarantee signal quality. Our study uses bidirectional long-short-term memory (BLSTM) based on the need for a model that can periodically adapt to changes in PPG characteristics. We propose combining TFA with a BLSTM model that can reduce training time while increasing accuracy. Our proposed method reduced the data points on the PPG signal from the initial 2100 to only 64, significantly reducing the training time from 239 min 34 sec to 4 min 4 sec. The model had an accuracy of 94.1%, sensitivity of 100%, specificity of 89.5%, and F1 score of 94.5%. Our proposed method achieves a high accuracy and excellent promise by relying solely on raw PPG data in BGL classification.
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Darian Texanditama
Abstrak :
Pemelajaran mesin dikenal sangat berguna dalam menyelesaikan permasalahan prediksi dan klasifikasi melalui pembelajaran pola dan perilaku data yang tersedia. Oleh karena itu, pemelajaran mesin dapat dimanfaatkan di berbagai bidang kehidupan dan industri modern. Namun, kinerja pemelajaran mesin sangat tergantung dari model pemelajaran mesin yang digunakan maupun dari kualitas data yang digunakan untuk pemelajaran. Data yang tidak bersih, tidak representatif, dan ketersediaannya terbatas akan mengurangi kualitas hasil prediksinya. Penelitian ini bertujuan untuk menguji kombinasi beberapa metode pemrosesan data (yaitu MissForest, GAIN, ENN, dan TabGAN oversampling) dengan model pembelajaran mesin (yaitu model CatBoost dan model klasifikasi biner berbasis neural network) untuk memprediksi kasus mahasiswa putus studi di beberapa universitas di Indonesia menggunakan data dari PDDikti. Penambahan fitur dilakukan untuk memberi label bidang studi terhadap dataset tersebut. Selain penambahan fitur seleksi fitur relevan menggunakan korelasi Pearson serta feature importances juga dilakukan setelah pelatihan model awal. Google Colab dengan bahasa pemrograman Python digunakan untuk menjalankan algoritma pemrosesan data dan pelatihan model. Hasil penelitian menunjukkan bahwa model CatBoost dengan kombinasi metode imputasi GAIN, undersampling ENN, dan tanpa fitur kelompok bidang studi memberikan F1-score tertinggi yaitu 66,38% dengan nilai precision 71,75% dan nilai recall 61,76%. Apabila digunakan model klasifikasi biner pemelajaran dalam akan didapatkan metrik terbaik F1-score 62,32%. Hasil terbaik penelitian ini menunjukkan peningkatan F1-score sebesar 2,15% dibandingkan dengan F1-score pada penelitian sebelumnya yang menggunakan model CatBoost bersama kombinasi Missforest dan ENN tanpa fitur kelompok bidang studi. Penelitian ini menunjukkan bahwa oversampling dan undersampling memberikan dampak yang berlawanan terhadap metrik precision dan recall. Penelitian juga menemukan seleksi fitur dapat meningkatkan kinerja model namun tidak berdampak besar dibandingkan teknik-teknik lain misalnya balancing dan optimisasi hyperparameter. ......Machine learning is known to be very useful in solving prediction and classification problems by learning the patterns and behavior of available data. Therefore, machine learning can be utilized in various areas of modern life and industry. However, the performance of machine learning is highly dependent on the machine learning model used as well as on the quality of the data used for learning. Data that is not clean, not representative, and scarce will reduce the quality of the prediction results. This study aims to test the combination of several data processing methods (namely MissForest, GAIN, ENN, and TabGAN oversampling) with machine learning models (CatBoost and binary classification models based on neural networks) to predict dropout cases at several Indonesian universities using data from PDDikti. The addition of features is done to label data with their respective fields of study. Other than adding features, selection of relevant features using Pearson’s correlation as well as feature importances is also carried out after initial model training. Google Colab with the Python programming language is used to run data processing algorithms and train models. This study shows that CatBoost with the combination of GAIN imputation, ENN undersampling, and no field of study feature results in the highest F1-score of 66.38%, which are composed of 71.75% in precision and 61.76% in recall. If a deep learning binary classification model is used instead, the best F1-score result is 62.32%. The best result from this study shows an increase in F1-score of 2.15% compared to the F1-score of the previous study (64.23%) which used CatBoost along with a combination of Missforest, ENN and no field of study features. This research shows oversampling and undersampling produce opposite effects on precision and recall scores. Research has also found that feature selection can improve model performance but does not have a large impact compared to other techniques such as balancing and hyperparameter optimization
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pray Somaldo
Abstrak :
ABSTRAK
Diabetik Retinopati adalah kelainan retina akibat komplikasi diabetes yang menyebabkan kebutaan. Seiring berkembangnya teknologi pengolahan citra, pendeteksian Diabetik Retinopati DR dimungkinkan melalui gambar retina yang disebut citra fundus dengan menggunakan ekstraksi ?tur. Dalam penelitian ini, diusulkan metode ekstraksi ?tur menggunakan Gray Level Co-occurrence Matrix GLCM . Penelitian ini mengusulkan sebuah metode dengan enam ?tur tekstur GLCM dengan klasi?kasi Naive Bayes. Dengan menggunakan tiga metode pengujian dan offset GLCM untuk dibandingkan, offset GLCM menghasilkan hasil yang lebih baik dengan accuracy 82.05 pada metode pengujian 70 train 30 test, accuracy 80 pada metode pengujian 5-Fold Cross Validation, accuracy 80.77 pada metode pengujian 10-Fold Cross Validation. Hasil ini akan menjelaskan seberapa akurat Naive Bayes untuk mengklasi?kasikan citra fundus normal atau citra DR.
ABSTRAK
Diabetic Retinopathy is retinal disorders resulting from diabetes complications that lead to blindness. As the development of technology in image processing, detection of Diabetic Retinopathy DR was possible through retinal images called fundus image using feature extraction. In this paper, a feature extraction method using Gray Level Co occurrence Matrix GLCM is proposed. This paper proposed a method with six textural features of GLCM with Naive Bayes classifier. Using three testing methods and offset of GLCM to compare with, the offset of GLCM achieves a better result with an Accuracy of 82.05 for 70 training data and 30 testing data method, Accuracy of 80.00 for 5 fold Cross Validation method, Accuracy of 80.77 for 10 fold Cross Validation method. These results will explain how accurate Naive Bayes to classify normal fundus image or DR fundus image.
2017
S69377
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gusti Agung Agastya Tarumawijaya
Abstrak :

Berbagai metode pengembangan rekognisi citra wajah telah banyak dilakukan, berbagai metode seperti Deep Learning, Multilayer Perceptron sudah dilakukan. Metode Convolutional Neural Network juga sudah banyak dikembangkan untuk melakukan klasifikasi citra seperti rekognisi jenis bunga, hewan, hingga pendeteksian kecacatan sel. Convolutional Neural Network diharapkan mampu melakukan rekognisi citra wajah secara tiga dimensi. Operasi konvolusi sebagai bagian ekstraksi fitur pada Convolutional Neural Network, diharapkan dapat membantu bagian klasifikasi untuk melakukan tugasnya dengan lebih baik. Rekognisi citra wajah secara tiga dimensi ini sangat dibutuhkan, karena ketika kita ingin mendeteksi seseorang tanpa diketahui orang tersebut, maka dengan berbagai macam sudut hadap wajahnya sistem harus dapat mengidentifikasi orang tersebut. Untuk penelitian kali ini saya akan menggunakan dataset gambar wajah tiga dimensi yang akan digunakan sebagai klasifikasi parameter biometrik seseorang. Pada penelitian ini akan menganalisa tiap-tiap lapisan pada Convolutional Neural Network, serta melakukan perbandingan dengan Backpropagation Neural Network. Dan juga akan melakukan analisa dengan menggunakan citra wajah berderau.


Various methods of developing facial image recognition have been carried out, various methods such as Deep Learning and Radial Basis Function Neural Network have been carried out. Convolutional Neural Network methods have also been developed to carry out image classifications such as recognition of types of flowers, animals, and detection of cell defects. Convolutional Neural Network is expected to be able to recognize facial images in three dimensions. Convolution operations as a feature extraction part of the Convolutional Neural Network are expected to help the classification section to do their job better. Three-dimensional face image recognition is needed, because when we want to detect someone without knowing by the person, then with a variety of face angles, the system must be able to identify that person. For this research I will use a three-dimensional face image dataset that will be used as a classification of a persons biometric parameters. In this study, we will analyze each layer in the Convolutional Neural Network, do a comparison with Backpropagation Neural Network. And also will do the analysis by using a noisy face image.

Depok: Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldi Purwanto
Abstrak :

Kanker merupakan salah satu penyakit dengan angka kematian tertinggi di dunia. Kanker adalah penyakit ketika sel-sel abnormal tumbuh tidak terkendali yang dapat menyerang organ tubuh yang berdampingan atau menyebar ke organ lain. Untuk mendiagnosis kanker paru-paru dapat dilakukan dengan pengambilan gambar rontgen, CT scan, dan biopsi jaringan paru. Tujuan dari penelitian ini adalah untuk memprediksi apakah pasien menderita kanker paru-paru atau tidak, dengan menggunakan data gambar CT scan mereka. Oleh sebab itu, dalam penelitian ini digunakan ekstraksi fitur dari gambar CT scan sebagai data untuk mengklasifikasi kanker paru-paru. Data yang digunakan merupakan data gambar CT scan yang didapat dari SPIE-AAPM Lung CT Challenge 2015. Gambar CT scan paru-paru dengan ukuran 512x512 sebelumnya dilakukan pre-processing 2D crop dan filtering. Dengan mengekstraksi fitur dari data gambar seperti ukuran nodul, Gray Level Co-occurrence Matriks (GLCM), dan Local Binary Pattern (LBP) dapat mengubah data gambar menjadi numerik. K-Fold Cross Validation digunakan untuk memisahkan data menjadi data training dan data testing. Fuzzy C-Means (FCM) dan Fuzzy Kernel C-Means (FKCM) diterapkan untuk pengklasifikasian. Didapatkan performa FKCM lebih baik dibandingkan FCM, dengan rata-rata akurasi 75.60%, precision 83.05%, dan specificity 87.80%. Oleh karena itu, penambahan kernel pada metode Fuzzy C-Means dapat meningkatkan performa dari metode tersebut


Cancer is one of the diseases with the highest mortality rate in the world. Cancer is a disease when abnormal cells grow out of control that can attack the body's organs side by side or spread to other organs. To diagnose lung cancer can be done by taking x-ray images, CT scans, and lung tissue biopsy. The purpose of this study is to classify whether patients have lung cancer or not using their CT scan image data. Therefore, in this study feature extraction from CT images was used as data to classify lung cancer. The data used in the form of CT scan image obtained from SPIE-AAPM Lung CT Challenge 2015. Previously, a CT scan of the lung with a size of 512x512 was pre-processed 2D crop and filtering. By extracting features from image data such as nodule size, Gray Level Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP) can convert image data to numeric. K-Fold Cross Validation is used to separate data into training data and testing data. Fuzzy C-Means (FCM) and Fuzzy C-Means (FKCM) are applied for classification. FKCM performed better than FCM, with 75.60% average accuracy, 83.05% average precision, and 87.80% average specificity. Therefore, adding a kernel to the Fuzzy C-Means method can improve the performance of the method.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>