Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Ruth Palupi Widya Handari
Abstrak :
Durasi pemeliharaan merupakan hal yang penting dalam kegiatan dry docking kapal. Estimasi durasi pemeliharaan diperlukan untuk membuat jadwal pemeliharaan kapal pada suatu galangan. Sayangnya saat ini pihak galangan belum mempunyai standar yang baku dalam mengestimasi durasi pemeliharaan kapal. Penelitian ini bertujuan untuk memperoleh model matematis estimasi durasi pemeliharaan kapal dry docking menggunakan Artificial Neural Network dan Genetic Algorithm. Dengan melihat volume dan jenis pekerjaan dry docking sebagai input, diperoleh model estimasi durasi dengan nilai rata-rata error 5.12 hari. Hasil estimasi kemudian dibandingkan dengan metode Neural Network standar dan metode Decision Tree-Genetic Algorithm-Neural network. Hasil penelitian menunjukkan bahwa metode Decision Tree-Genetic Algorithm-Neural network mempunyai nilai estimasi yang lebih akurat dibandingkan dengan kedua metode lainnya.
Maintenance time duration is an important things in ship dry docking activities. Estimating the time duration is necessary for ship schedule arranging in dock. Unfortunately, the dock company doesn’t have a standard procedure in estimating ship maintenance duration. The purpose of this research is to get mathematic model of dry docking maintenance duration estimation using Artificial Neural Network and Genetic Algorithm. By considering the job volume and type as input variable, the research get estimation model with root mean square error (RMSE) 5.12 day. Then, the estimation result is compared with traditional Neural network and Decision Tree-Genetic Algorithm-Neural network method. The result shows that Decision Tree-Genetic Algorithm-Neural network is more accurate in estimating the ship maintenance duration than the other two methods.
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39301
UI - Tesis Membership  Universitas Indonesia Library