Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 28 dokumen yang sesuai dengan query
cover
Adri Ilham Husnil
Abstrak :
Vacuum dryer adalah salah satu jenis alat yang digunakan untuk melakukan pengeringan dengan cara menurunkan tekanan di sekitar benda yang dikeringkan. Operasi pemisahan pada pengeringan adalah kegiatan mengubah suatu bahan umpan berbentuk padatan, semi-padatan atau cairan menjadi produk berbentuk padatan dengan cara mengeluarkan air yang terkandung dalam bahan ke lingkungannya. Maka penekanan hasil dari pengeringan adalah padatan. Masalah yang dikaji pada tugas akhir ini adalah mengenai fenomena-fenomena yang terjadi pada saat proses pengeringan berlangsung. Dari hasil pengujian yang telah dilakukan dengan melakukan pengukuran terhadap penurunan massa, perubahan kelembaban nisbi dan temperatur, ternyata didapatkan bahwa ketika tekanan diturunkan (dengan proses vakum), maka kelembaban nisbi juga ikut turun. Penurunan kelembaban nisbi inilah yang merupakan faktor yang mempengaruhi laju pengeringan. Jadi, laju pengeringan tidak langsung dipengaruhi oleh penurunan tekanan, melainkan oleh penurunan kelembaban nisbi.
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37052
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulfikar Ali Akbar
Abstrak :
Berkembang pesatnya aplikasi sumber energi baru-terbarukan di dunia khususnya Indonesia berpotensi memberikan dampak yang sangat besar bagi pemenuhan kebutuhan energi nasional. Energi biomassa yang tersimpan dalam senyawa kimia sekam padi memiliki ketersediaan yang berlimpah. Teknologi gasifikasi yang sudah dikembangkan oleh riset gasifikasi Universitas Indonesia memiliki salah satu permasalahan pada kualitas moisture sekam padi yang cenderung tinggi. Pembuatan alat pengering sekam diharapkan mampu menjadi penunjang ketersediaan energi, desain pengering konveksi dengan tipe pengering fluidisasi dan pemodelan pemanas LPG burner. Riset ini melakukan pengukuran pada proses drying rate sekam padi. Analisa dilakukan pada variasi suhu dan aliran udara terhadap waktu pengeringan. Perhitungan secara teoritis dilakukan dengan metode kesetimbangan energi dan kesetimbangan massa. Selanjutnya akan menghasilkan laju evaporasi. ...... Renewable energy research expansion in the world especially in Indonesia has given effects for national energy usage. Biomass energy which invested in the chemical compound of rice husk has a large availability. Gasification technology which has been developed has several problems, one of them is in the high moisture quality in rice husk. Fabrication of the dryer is expected can be a supporting systems in the biomass energy production. The dryer was designed for the convective dryer with the fluidized drying mechanism and LPG burner as a heater. This research measured on the drying rate of rice husk, analysis on the variation of temperature and air flow depends on drying period (time). Theoritically, energy balance and mass balance have been selected as a calculation methods. Finally, the drying rate will be converted into time period of drying on the bulk density variation.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63538
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Dicky Hans Setiawan
Abstrak :
ABSTRAK
Sintesis zeolit A telah dilakukan dalam upaya untuk memanfaatkan kaolin asal Bangka Belitung menggunakan metode hidrotermal. Kaolin diaktivasi menjadi metakaolin pada variasi suhu kalsinasi 650, 700, 750, dan 800°C sebab metakaolin lebih reaktif dalam proses sintesis zeolit A. Sintesis zeolit A dapat dilakukan melalui proses hidrotermal dengan variasi konsentrasi NaOH 2.5, 2.7, 3M sebagai zat pengarah serta waktu kristalisasi 5, 6, 7 jam yang akan mempengaruhi kristalinitas zeolit A yang terbentuk. Zeolit A yang sudah disintesis diaplikasikan sebagai desiccant pada proses pengering jagung dalam bentuk pellet berdiameter 5mm. Pada tahap aplikasi ini dilakukan pada suhu awal 50°C selama 2 jam pengujian pengaruh kecepatan udara masuk pengering yaitu 0.2, 0.4, 0.6 m/s serta perbandingan antara massa jagung:zeolit A sebesar 1:1, 1:2, 1:3 terhadap kemampuannya dalam mengurangi waktu pengeringan jagung. Hasil data selanjutnya dibandingkan terhadap model matematika pengeringan yaitu Model Newton, Henderson-Pabis, dan Page agar dapat menentukan waktu pengeringan optimal seluruh variasi. Menggunakan suhu kalsinasi optimal sebesar 750°C, dihasilkan kristalinitas zeolit A terbesar yaitu 99.73 % yang didapat ketika menggunakan konsentrasi NaOH 3 M, dan dan waktu kristalisasi 7 jam. Hasil pada tahap aplikasi pengeringan jagung telah didapatkan bahwa Model matematika Henderson-Pabis adalah model terbaik untuk merepresentasikan perilaku pengeringan jagung. Waktu tercepat, yaitu sekitar 9.4 jam, untuk mendapatkan kadar air jagung 14% (w.b.) dari kadar air jagung awal 78.76% (w.b.) didapatkan ketika menggunakan perbandingan massa jagung:zeolit A 1:1, dan kecepatan udara inlet 0.4 m/s.
ABSTRACT

Synthesis of Zeolite A was carried out in an effort to utilize kaolin from Bangka Belitung using the hydrothermal method. Kaolin was activated into metakaolin at various calcination temperatures of 650, 700, 750 and 800 ° C because metakaolin is more reactive in the synthesis of zeolite A. Synthesis of zeolite A had been carried out through hydrothermal processes with variations in the concentration of NaOH 2.5, 2.7, 3M as the lead and time crystallization 5, 6, 7 hours which will affect the crystallinity of zeolite A formed. Synthesized Zeolite A is applied as desiccant in the corn drying process in the form of a 5mm diameter pellet. The application was carried out at an initial temperature of 50 ° C for 2 hours for testing the effect of the dryer air intake speed is 0.2, 0.4, 0.6 m / s and the ratio between the mass of corn: zeolite A is 1: 1, 1: 2, 1: 3 against its ability to reduce corn drying time. The results of the data were then compared to the mathematical drying models namely Newton, Henderson-Pabis Model, and Page in order to determine the optimal drying time of all variations. Using optimal calcination temperature of 750 ° C, the highest yield of zeolite A crystallinity was 99.73% obtained when using 3 M NaOH concentration, and 7 hours crystallization time. The results of the application stage of corn drying have been found that the Henderson-Pabis mathematical model is the best model to represent the drying behavior of corn. The fastest time, which is around 9.4 hours, to obtain a corn water content of 14% (w.b.) from the initial corn moisture content of 78.76% (w.b.) was obtained when using the mass ratio of corn: zeolite A 1:1, and air inlet velocity 0.4 m/s.

2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harry Hafitara
Abstrak :
Pertumbuhan ekonomi dan populasi penduduk di Indonesia akan menyebabkan pemenuhan kebutuhan terhadap energi terus mengalami peningkatan. Pemilihan jenis bahan bakar dan teknologi yang digunukan akan berdampak pada pertambahannya emisi gas CO2 yang dihasilkan dari pembakaran sumber energi menuju atmosfir dan dalam jumlah tertentu hal tersebut akan berdampak terhadap pemanasan global. Pemanfaatan energi terbarukan seperti biomass langkah pemerintah dalam konservasi bahan bakar dan mengurangi jumlah pemakaian energi fosil agar berkurangnya efek dari rumah kaca. Sumber energi biomassa mempunyai beberapa kelebihan antara lain merupakan sumber energi yang dapat diperbaharui sehingga dapat menyediakan sumber energi secara berkesinambungan dan dapat mengurangi emisi gas CO2. Biomassa harus mengalami proses pengolahan terlebih dahulu sebelum dapat digunakan sebagai sumber energi. Pada proses pengolahan biomassa, pengeringan merupakan salah satu tahap yang sangat penting untuk menghasilkan kualitas bahan bakar biomassa yang baik. Penelitian ini akan menyelidiki mesin pengering rotari dengan bahan bakar pelet biomassa untuk mengeringkan limbah organik. Variabel yang dilakukan dalam pengujian alat pengering rotari ini menggunakan ukuran pelet kayu diameter 8mm dengan laju konsumsi 123 gram/menit, putaran drum pengering 1; 1.25; dan 1.5 rpm beserta laju aliran udara pengering 33435.8; 57346.1, dan 75139.8 lpm. ......Economic growth and population in Indonesia will cause the fulfillment of energy needs to continue to increase. The choice of fuel and technology used will have an impact on the increase in CO2 emissions resulting from the burning of energy sources into the atmosphere and in certain amounts it will have an impact on global warming. Utilization of renewable energy such as biomass is a step of the government in conserving fuels and reducing the amount of fossil energy use so that the greenhouse effect is reduced. Biomass energy sources have several advantages including being a renewable energy source so that it can provide a sustainable energy source and can reduce CO2 gas emissions. Biomass must undergo processing before it can be used as an energy source. In the process of biomass processing, drying is one of the most important steps to produce good quality biomass fuel. This research will investigate a rotary drying machine with biomass pellet fuel to dry organic waste. The variables carried out in this rotary dryer test using a diameter of 8mm wooden pellets with a consumption rate of 123 grams / minute, a drum rotation speed of 1; 1.25; and 1.5 rpm along with a drying air flow rate of 33435.8; 57346.1; and 75139.8 lpm.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
[Pada proses pengering semprot apabila menggunakan temperatur tinggi dapat menyebabkan degradasi pada material sensitif panas seperti vitamin A padaa buah tomat. Dengan demikian temperatur harus diturunkan untuk menghindari degradasi tersebut namun akan berdampak pada lambatnya pengeringan. Untuk mengatasi ini dapat digunakan dehumidifier untuk menurunkan kelembaban udara pengering sehingga laju pengeringan menjadi lebih cepat. Namun, penambahan dehumidifier ini membutuhkan daya tambahan yang akan meningkatkan konsumsi energi spesifik dari sistem. Dehumidifier pada penelitian ini menggunakan sistem refrigerasi yaitu memanfaatkan evaporator sebagai dehumidifier dan memanfaatkan sebagian panas yang dibuang di kondensor untuk preheater. Dari penambahan sistem refrigerasi ini harus dilakukan penelitian pula untuk konsumsi energi spesifiknya. Hasil dari penelitian ini menunjukkan bahwa vitamin A pada tomat mengalami kerusakan yang sangat signifikan diantara suhu 90oC dan 120oC. Dan konsumsi energi spesifik terendah terjadi saat kelembaban udara minimun, debit udara pengering maksimum dan suhu pengeringan maksimum pada penelitian ini yaitu suhu keluaran evaporator 10oC, debit 450 lpm dan suhu heater 120oC., In spray drying process if the air drier temperature is high, it can degrade heat sensitive materials like vitamin A on tomato. Hence, the temperature must be lowered to avoid the degradation, however, it makes drying rate slower. To overcome this problem, dehumidifier can be used to low the air humidity so the drying rate faster. However, the addition of dehumidifier need the more power increasing the specific consumption energy of the system. The dehumidifier in this research, used refrigeration system to utilize evaporator as dehumidifier and used the heat rejected on condensor to preheat the air drier. This addition need to be evaluated on the specific energy consumption. The result of this research shows that vitamin A on tomato degrades significantly between temperature 90oC and 120oC. And the minimum specific energy consumption occurs when the humidity is minimum, the air drier flow rate is maximum, and the temperatur of air drier is maximum. In this research the humidity is when the outlet temperatur of air drier from evaporator is 10oC, the flow rate is 450 lpm, and the temperatur of air drier is 120oC]
Fakultas Teknik Universitas Indonesia, 2014
S58074
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rialfi Akbarsyah
Abstrak :
Pengeringan konvektif adalah jenis pengeringan yang paling sering digunakan di industri pengeringan makanan. Tetapi pengering konvektif umum mempunyai efisiensi rendah dan konsumsi daya yang tinggi. Untuk mengatasi masalah ini, sebuah pengering makanan dengan teknologi konvektif, microwave, dan heat pump di desain. Sebuah investigasi dilakukan untuk menemukan desain yang cocok. Tinjauan literatur dilakukan terhadap komponen-kompoen yang akan dipakai. Hasil tinjauan literatur menunjukkan bahwa microwave mampu mencapai tingkat pengeringan yang lebih tinggi dan kualitas yang lebih baik, tetapi memakai lebih banyak daya. Heat pump mampu mencapai efisiensi tinggi karena kemampuannya untuk mendaur ulang energi panas yang digunakan untuk pengeringan dan kontrol kelembaban yang lebih baik. Beberapa jenis pengering telah diteliti, dan dua jenis pengering dianggap layak. Jenis pengeringnya adalah pengering batch tray dan pengering continuous conveyor. Sebuah diagram sederhana dibuat terlebih dahulu untuk menunjukkan proses dasarnya. Sketsa yang lebih mendalam dibuat untuk menunjukkan lokasi komponen. Berdasarkan sketsa tersebut, pengering kemudian dimodelkan dalam 3D menggunakan software CAD. ......Convective drying is the most common type of food drying used in the industry. But convective drying has low drying efficiency and high power consumption. To mitigate this problem, a food dryer with convective, microwave, and heat pump technology was designed. An investigation was done to find the suitable design. A literature review was done on the components of the dryer and the types of dryers currently available. Scientific literatures shows that microwave is able to achieve higher drying rate and better quality at the cost of power consumption. Heat pump is able to achieve high efficiency due to its ability to recycle the thermal energy used for the drying and better humidity control. Several dryer types were researched, and two types of dryers was deemed to be viable for the project. The dryer types are batch tray dryer and continuous conveyor dryer. A simple diagram was made first to show the basic process. A more in-depth sketch was created to show the locations of the components. Based of those sketches, the dryer is then modelled in 3D using a CAD software.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tarryn Frances Nathalie Meka
Abstrak :
Mikroalga merupakan tumbuhan air tergolong ramah lingkungan dan memiliki kemampuan adaptasi yang tinggi. Salah satu jenis mikroalga yang sedang dikembangkan di Indonesia adalah ganggang hijau Chlorella sp. Selain kemampuan biofiksasi CO2 tinggi, Chlorella sp juga memiliki komposisi biomassa tinggi yang dapat dimanfaatkan sebagai potensi bahan pangan alternatif dan sumber bahan baku biofuel. Beberapa penelitian pendahuluan telah dilakukan untuk mengamati potensi pemanfaatan mikroalga serta metode paling optimal untuk mempersiapkan pembiakkan Chlorella sp. dalam skala besar. Salah satu hasil penelitian yang menjadi dasar kajian kali ini adalah mengenai peningkatan produksi biomassa dengan dua metode pencahayaan kontinu, yakni dengan intensitas tetap dan dengan metode alterasi. Penelitian lain yang juga dijadikan dasar adalah mengenai susunan optimum fotobioreaktor untuk peningkatan produksi biomassa. Penelitian ini merupakan pengembangan dari penelitian produksi biomassa yang bertujuan memperoleh komposisi nutrisi esensial dari biomassa Chlorella sp. hasil biakkan sebelumnya. Evaluasi kualitas nutrisi, seperti kandungan klorofil, protein, dan lipid sangat penting artinya dalam pembiakkan Chlorella sp. yang memiliki nilai ekonomi tinggi. Hal ini disebabkan pemilihan metode pembiakkan Chlorella sp. sepatutnya tidak hanya unggul dalam hal kuantitas (jumlah sel) tetapi juga kualitasnya (kandungan nutrisi). Tujuan lain dari penelitian ini adalah untuk memberikan gambaran pemanfaatan biomassa Chlorella sp. yang telah dibiakkan selama ini berdasarkan jumlah kandungan nutrisinya. Metode pengujian yang dipilih adalah spektrofotometri sinar tampak untuk identifikasi klorofil, metode Lowry untuk identifikasi jumlah protein, serta metode Bligh-Dryer untuk identifikasi lipid dalam biomassa Chlorella sp. Dari hasil penelitian diperoleh bahwa kandungan nutrisi esensial dalam biomassa Chlorella sp. dengan jumlah terbesar adalah protein sebesar 33.53 mg/L dan diikuti oleh klorofil sebesar 14.3 mg/L. Sementara komposisi lipid justru mengalami penurunan hingga 70% berat.
Microalgae are water plant which are environmentally friendly and also have high ability of adaptation. One kind of algae being developed in Indonesia nowadays is the genus of Chlorella sp. Not only that Chlorela sp. have high ability for CO2 fixation but also got high biomass potential which can be used as alternative food source and biofuel source. Several previous research have been conducted to find out the biomass potential of this microalgae and the optimized method to produce it on a large scale. One of the research used as based on this experiment is about increasing biomass production in mid-scale reactor using two types of continuous illumination; the continuous and the alteration method. Other research used as based is about arranging the photobioreactor to increase biomass production. This research is a further research in order to determine the essential nutritional content from the biomass production of Chlorella vulgaris. The evaluation of nutritional content such as chlorophyll, protein, and lipid is very important in producing Chlorella sp. with high economic value. It is because when producing Chlorella sp. we hoped that the biomass that we have is not only have great cellular content but also high nutritional content. Other goal of this research is to give prediction about how to process the biomass we ve got based on its nutritional content. Method used to determine the nutritional content are visible spectrofotometer for chlorophyll identification, Lowry method for protein identification, and Bligh-Dryer Method for lipid identification in Chlorella vulgaris biomass. From this research we found out that majority essential nutrition in our Chlorella sp. s biomass is protein (33.53 mg/L) followed by chlorophyll (14.3 mg/L). On the other hand, lipid composition decreased until 70% weight.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51835
UI - Skripsi Open  Universitas Indonesia Library
cover
Nurdi
Abstrak :
Pengeringan memegang peran yang sangat penting dalam menentukan kualitas dan kontinuitas dalam proses pembuatan tepung tapioka. Secara tradisonal proses pengeringan dilakukan oleh para petani dengan memanfaatkan panas matahari. Tesis ini bertujuan untuk melakukan desain dan analisis sistem pengering buatan tipe chamber dryer dengan sirkulasi udara sehingga dapat memenuhi standar FAO untuk proses pengeringan tapioka. Tesis ini secara khusus mengkaji desain dan analisis sistem pembangkit panas yang memanfaatkan thermal-oil jenis Essotherm500 sebagai fluida pemindah panas untuk ruang pengering berkapasitas 120 - 150 kg tapioka basah dengan suhu pengeringan 60 -70 °C. Perencanaan peralatan pembangkit panas menghasilkan desain dengan karakteristik sebagai berikut : sistem tertutup (closed system) dimana thermal-oil dialirkan dalam pipa dengan diameter 1/2 inchi berbentuk koil dengan diameter spiral dalam 300 mm, diameter spiral luar 400 mm, jumlah lilitan 21 buah, picth 27 mm, pipa koil diletakkan dalam ruang heat exchanger berbentuk shell dengan diameter 600 mm panjang 900 mm, ripe heat exchanger conterflow shell-and-tube untuk one shell pass and two or multiple of two tube passes, udara panas yang dialirkan adalah hasil pembakaran burner dari ruang bakar. Untuk pengeringan 150 kg tepung basah dengan kadar air awal 45%, kadar air akhir 12%, suhu pengeringan 60 °C, dan waktu pengeringan 2,5 jam didapat total kebutuhan panas pengeringan tepung tapioka sebesar I95.687,8 kJ. Dengan demikian, kapasitas pembangkit panas yang dibutuhkan sebesar 21,74 kW, flow thermal oil 12 liter/menit, suhu thermal oil awal 65 "C, suhu thermal oil akhir 106,5 °C, flow udara alat penukar panas 0,2 kg/det, suhu gas hasil pembakaran (flue gas) 500 °C, luas bidang pemindah panas 3,35m2, bahan bakar kerosene dengan kebutuhan bahan 3,3 liter/jam. Dari hasil pengujian dan perhitungan didapatkan kalor pengeringan tepung tapioka rata-rata yang disuplai dari pemanas buatan sebesar 1107,9 kJ/kg, rasio bahan bakar dan tepung basah adalah 0,08 liter bahan bakar untuk 1 kg tepung tapioka basah, lama waktu pengeringan rata-rata 5 jam, kapasitas alat pembangkit panas rata-rata 7,58 kW, efsiensi sistem rata-rata 56,4 % , rugi panas total rata-rata 5,87 kW dengan komposisi rugi panas cerobong 81 %, rugi panas penukar panas I 1 % dan mgi panas lain-lain 9%. Effektivitas alat penukar panas rata-rata 0,67.
Drying plays an important role on controlling the quality and continuity of tapioca powder production processes. Traditionally farmers use the solar heat for drying agriculture products. This thesis aims to design and analyze a chamber dryer system with air circulation in order to fulfill the FAO drying standard for tapioca. In particular, the objective of this thesis is to to design and to develop a heat generating system with Essotherm ® 500 as the working fluids. The capacity of the chamber is 120 - 150 kg of wet tapioca operating at 60 - 70°C. A new design of the heat generating equipment has been developed with the following characteristics: a closed system in which the thermal oil flow in a coil shaped pipe of 1/2 inch diameter. It has a coiled pipe arrangement of 300 mm and 400 mm inner and outer diameters respectively. The pipe is placed in a counter-flow shell and tube heat exchanger of one shell pass and two or multiple of two tube passes. The hot air comes from the flue gas of fuel burning. The heat requirement for drying of 150 kg wet tapioca from 45% to 12 % moisture, at 60 °C during a period of 2,5 hours is 195,687,8 kJ. Thus, the capacity of the heat generator is 21,74 kW. Other important design parameters are as follows: thermal oil flow is 12 1/min, initial thermal oil temperature is 65 °C, final thermal oil temperature is 106,5 °C, air flow within the heat exchanger is 0,2 kg/sec, flue gas temperature is 500°C, heat transfer area is 3,35 m2 and kerosene flows at 3,3 1/janti From testing and calculating funded: heat supplied from heat generate is 1107,9 kJ/kg, ratio of fuel and wet tapioca is 0,08, average time needed to drying is 5 hours, average heat generate capacity is 5,87 kW, efficiency system is 56,4 %, average heat loss is 5,87 kW, distribution of losses are: chimney is 81%, heat exchanger is 11% and an others utility losses is 9%. An average Heat exchanger effectiveness is 0,67.
Depok: Fakultas Teknik Universitas Indonesia, 2002
T5118
UI - Tesis Membership  Universitas Indonesia Library
cover
Daragantina Nursani
Abstrak :
Penggunaan biomassa sebagai sumber energi atau bahan bakar dalam bentuk pelet memiliki banyak keunggulan, diantaranya mudah untuk disimpan, didistribusikan, serta membuat proses pembakaran lebih sempurna dan stabil. Dalam proses pembuatan pelet, biomassa perlu dikeringkan terlebih dahulu untuk menghindari kontaminasi jamur yang dapat menurunkan nilai kalor. Jenis pengering yang biasa digunakan untuk pengeringan biomassa adalah tipe rotari, karena memiliki kapasitas tinggi, mudah dalam pengoperasian dan pemeliharaan. Penelitian ini bertujuan untuk melakukan optimasi proses pengeringan dengan menginvestigasi laju penurunan kadar air sampah biomassa pada ruang pengering, menginvestigasi sebaran energi pada ruang pengering, serta menginvestigasi pengaruh debit dan suhu udara pengering serta residence time material terhadap efisiensi energi sistem pengering rotari. Penelitian ini dilakukan secara experimental dengan mengukur suhu, kelembaban, kecepatan udara, kecepatan putar, dan bobot produk dan pelet pada berbagai variasi yaitu variasi debit udara pengering 0,6, 1, dan 1,25 m3/s, variasi kecepatan putar 1, 1,25 dan 1,5 RPM dan variasi laju konsumsi pelet 48 g/min dan 123 g/min. Data hasil experimen dianalisa dengan menggunakan analisa heat dan mass tranfer untuk menghitung sebaran penurunan kadar air dan energi pindah panas, serta analisa energi input dan output untuk perhitungan efisiensi energi sistem pengering. Hasil analisa menunjukkan bahwa laju penurunan kadar air sangat dipengaruhi oleh laju aliran udara pengering, penurunan kadar air tertinggi pada variasi 1,25 m3/s. Penurunan kadar air tertinggi terjadi pada awal masuk material ke ruang pengering dan semakin melandai saat material menuju pengeluaran drum pengering. Perpindahan panas pada drum pengering terjadi paling tinggi di titik Q 4-5 (ujung drum pengering/arah pemasukan material). Rata-rata nilai energi perpindahan panas ini lebih tinggi pada laju aliran udara pengering yang lebih tinggi. Efisiensi sistem memiliki trend meningkat seiring dengan peningkatan debit udara pengeringan, efisiensi sistem bervariasi dari 8,91% hingga 26,84%. ......The use of biomass as an energy source or fuel in the form of pellets has many advantages, including being easy to store, distribute, and make the combustion process more perfect and stable. In the pellets processing, biomass needs to be dried to avoid fungal contamination which can reduce the caloric value. The type of dryer that is normally used for biomass drying is the rotary type, because it has a high capacity, easy to operate and maintain. This study aims to optimize the drying process with investigate the rate of decrease in water content of biomass waste in the drying chamber, investigate the distribution of energy in the drying chamber, and investigate the effect of discharge and temperature of the drying air and residence time material on the energy efficiency of a rotary drying system. This research was carried out experimentally by measuring temperature, humidity, air velocity, rotational speed, and weight of products and pellets at various variations, namely variations in the drying air discharge of 0.6, 1, and 1.25 m3/s, variations in rotational speed of 1, 1.25 and 1.5 RPM and the variation of pellet consumption rate is 48 g/min and 123 g/min. Experimental data were analyzed using heat and mass transfer analysis to calculate the distribution of water content reduction and heat transfer energy, input and output energy analysis for the calculation of the energy efficiency of a drying system. The results of the analysis show that the rate of decrease in water content is strongly influenced by the rate of drying air flow, the highest decrease in water content at a variation of 1.25 m3/s. The highest decrease in water content occurs at the initial entry of material into the drying chamber and increasingly sloping as the material leads to the drying drum dryer. Heat transfer in the drying drum occurs highest at Q points 4-5 (end of the drying drum/direction of material entry). The average value of this heat transfer energy is higher at higher drying air flow rates. System efficiency has an increasing trend along with an increase in drying air discharge, system efficiency varies from 8.91% to 26.84%.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Avianto M. Munir
Abstrak :
Sampah dimanapun selalu menimbulkan masalah. Ini disebabkan luasnya dampak negatif yang ditimbulkan serta casa penanganannya. Dampak negatif yang kentara diantara kita adalah berupa gangguan terhadap keseimbangan alam dan lingkungan. Oleh karena itu perlu dipikirkan cara penanganannya yang relatif aman serta tidak membahayakan dampak yang dihasilkan. Salah satu alternatif penanganan tersebut adalah dengan membakar sampah yang dapat dilakukan di suatu tempat yang jauh dari segal kegiatan. Namun pembakaran tersebut terkadang sukar dikendalikan. Hal ini disebabkan bila terdapat angin yang cukup kencang sehingga sampah, asap, debu, arang, dan api itu sendiri terbawa ke tempat-tempat sekitar yang dapat menimbulkan kerugian serta dampak negatif. Oleh karena itu diperlukan suatu instalasi pembakaran yang dapat menanggulangi hal tersebut. Instalasi pembakaran tersebut disebut insinerator. Proses pembakaran di dalam insinerator disebut insinerasi. Dalam insinerasi, karakteristik sampah, terutama kandungan airnya dapat mempengaruhi lamanya pembakaran serta jumlah pemakaian bahan bakar. Pengeringan perlu dilakukan terlebih dahulu sebelum dikerjakan dalam insinerator. Pengeringan ini dapat dikerjakan sekaligus dengan pengontrolan suhu dan waktu pengeringan. Untuk sampah yang mengandung air (moisrure) tinggi, pengerlngan dilakukan di Iuar insinerator. Berarti instalasi pengeringan atau alat pengering dipasang di Iuar konsturksi insinerator. Alat pengering yang dapat digunakan sebagai pengeringan pendahuluan adalah Rotary Dryer. Alat ini berbentuk silinder yang dapat berputar dan di dalamnya terdapat sirip-sirip yang berfungsi sebagai pemisah atau pengayak, agar sampah tidak menggumpal. Alat ini juga dapat digunakan sebagai ruang masuk sampah ke dalam insinerator dan terdapat pula ruang untuk mengalirkan udara panas sebagai pengonuolan suhu dan media pengering.
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36621
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>