Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Raditya Nugraha
Abstrak :
Spintronika adalah penelitian yang bertujuan menghasilkan perangkat-perangkat mutakhir yang memanfaatkan interaksi spin elektron. Salah satu perangkat tersebut adalah racetrack memory, perangkat memori magnetik yang berbasis pergerakan dinding domain (DW) pada media kawat nano ferromagnetik. Oleh karena itu, dinamika serta perubahan struktur DW pada sebuah kawat nano menjadi salah satu perhatian penting dalam penelitian, terutama pada ferromagnet dengan anisotropi magnetisasi tegak lurus bidang (PMA). Dalam penelitian ini, telah dilakukan studi dinamika DW tipe-Bloch pada sebuah kawat nano CoFeB dengan orientasi PMA menggunakan pendekatan simulasi mikromagnetik. Dari penelitian, diketahui bahwa kawat nano lebih tebal memiliki kecepatan DW yang 1,5-3 kali lipat lebih besar dibanding kawat nano lebih tipis. Kawat nano lebih tebal juga memiliki medan Walker yang lebih besar dibanding dengan pada kawat nano tipis. Kecepatan DW pada medan rentang medan rendah 1 - 10 Oe diamati cocok dengan teori pergerakan creep yang menjelaskan pergerakan DW di bawah threshold depinning. Di sekitar medan Walker, DW mulai bergerak kembali ke posisi awalnya untuk kawat nano selebar 50 nm. Untuk kawat nano lebar 100 dan 150 nm, terbentuk sebuah Bloch-line pada DW. Penggunaan pulsa medan magnet nanosekon dapat saja memengaruhi pergerakan DW dan pembentukan Bloch-line. ......Spintronics aims to develop state-of-the-art devices by utilizing electron spin interactions. One spintronic device currently in development is racetrack memory, a magnetic memory device based on domain wall (DW) motion using a ferromagnetic nanowire as medium. As such, the dynamics and structure change of the DW on a nanowire has been of great interest, particularly on ferromagnets with perpendicular magnetization anisotropy (PMA). In this study, we have conducted micromagnetic simulations to investigate the dynamics of the Bloch-type DW on CoFeB nanowires with PMA. From this study, its shown that thicker nanowires have DW velocities that are 1.5 to 3 times faster than thinner nanowires. Thicker nanowires also have larger Walker fields compared to thinner nanowires. The DW velocities of the low-field regime 1 - 10 Oe is observed to correspond with the creep motion theorem commonly described for DW motion below the depinning threshold. Around the Walker field, the DW begins to move backwards to its original position on the 50 nm wide nanowire. For the 100 and 150 nm wide nanowire, a Bloch-line is formed within the DW. Usage of a nanosecond magnetic pulse may influence the motion of the DW and the formation of the Bloch-line.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Candra Kurniawan
Abstrak :
Penelitian spintronika memiliki ide untuk memanipulasi spin elektron pada suatu sistem zat padat dengan tujuan untuk menghasilkan divais masa depan, seperti divais logika terintegrasi dan sistem penyimpan data non-volatile. Salah satunya adalah pengembangan divais racetrack memory yang berbasis domain wall (DW) magnetik dalam sistem kawat nano (nanowire) sebagai media penyimpanan data yang diusulkan oleh S. Parkin, dkk. pada tahun 2008. Perhatian penting pengembangan racetrack memory adalah karakteristik DW pada material magnetik dengan orientasi magnetisasi anisotropik sejajar bidang (in-plane anisotropy, IMA) dan tegak lurus bidang (perpendicular magnetic anisotropy, PMA). Kelebihan dari material PMA adalah mampu mengurangi besarnya arus ambang (threshold) hingga satu orde (~ 1011 Am-2) untuk menggerakkan DW sepanjang kawat nano dan mengurangi dampak pemanasan Joule. Dalam penelitian ini, dilakukan studi dinamika pegerakan DW dalam kawat nano berorientasi magnetisasi sejajar (IMA) dan tegak lurus (PMA) berbasis material feromagnetik menggunakan pendekatan simulasi mikromagnetik. Dari hasil penelitian ini diketahui bahwa pada material CoFeB yang bertipe PMA, DW memiliki kecenderungan orientasi perputaran magnetisasi secara natural (groundstate) yang bergantung pada geometri kawat nano sehingga memunculkan tipe Bloch Wall atau Néel Wall. Dengan demikian dapat didefinisikan suatu ukuran kritis (tc) transisi Bloch Wall menjadi Néel Wall sebanding dengan perubahan ukuran kawat nano melalui kalkulasi sederhana berdasarkan profil magnetisasi Mx dan My. Pada nanowire CoFeB, diketahui bahwa perubahan durasi pulsa magnetik eksternal mempengaruhi besaran medan Walker breakdown (HWB). Semakin pendek durasi pulsa magnetik, maka nilai HWB akan semakin besar. Pergeseran nilai HWB pada durasi pulsa magnetik yang lebih singkat disebabkan adanya kebutuhan energi DW untuk bergerak sepanjang kawat nano yang lebih dominan. Pada material IMA, seperti Permalloy, ditunjukkan bahwa ukuran kedalaman notch yang semakin besar sebanding dengan peningkatan arus depinning (Jd) untuk menggerakkan DW keluar dari area notch. Stuktur internal DW juga mengalami transformasi bentuk dari transversal menjadi anti-vortex dalam proses depinning. Pada material PMA CoFeB, ditunjukkan juga bahwa kedalaman ukuran notch memiliki korelasi berbanding lurus terhadap besarnya Jd. Namun demikian, pada kedalaman notch yang semakin besar terjadi peningkatan nilai Jd yang signifikan, terutama pada ukuran > 20 nm. Selain itu, nilai Jd tersebut lebih dipengaruhi oleh ketebalan kawat nano pada ukuran yang lebih tipis. Karakteristik ini dipengaruhi oleh peningkatan luas ukuran melintang (cross-sectional area), sehingga meningkatkan dominasi energi demagnetisasi untuk menahan DW pada kondisi pinning. Dipahami bahwa peningkatan energi DW saat depinning dapat disebabkan oleh perubahan ukuran struktur DW yang terjadi pada ukuran kawat nano yang lebih besar. ......The spintronics research had an idea to manipulate the electron spin in the solid state system with the purpose to obtain future devices, such as the integrated logic and the non-volatile memory. One of the important topics was the development of racetrack memory, based on the magnetic domain wall (DW) on the nanowire system as proposed by S. Parkin et al. in 2008. The interesting part of racetrack memory was the DW characteristics in the magnetic materials with in-plane anisotropy (IMA) and perpendicular magnetic anisotropy (PMA). The advantages of the PMA materials are the lower threshold current (~1011 Am-2) to move DW along the nanowire and reduce the impact of Joule heating. In this work, the DW dynamics on the ferromagnetic nanowire with IMA and PMA orientation have been studied utilizing micromagnetic simulation. The results showed that on the PMA CoFeB material, the DW magnetization tends to change gradually in the groundstate condition depending on nanowire geometries to obtain the Bloch Wall or the Néel Wall. Therefore, a critical transition size (tc) of the Bloch Wall to Néel Wall can be defined as the increasing nanowire size by performing a simple calculation based on the Mx and My magnetization profile. In the CoFeB nanowire, it is understood that the decreasing of external magnetic pulse duration influenced the value of the Walker breakdown field (HWB). The HWB increased as the decreasing of pulse duration decreased. The shifted HWB values in the shorter pulse duration were caused by the dominant energy needed to move DW along the nanowire. The IMA material, such as Permalloy, showed that the increasing of notch dept related to the increasing of depinning current (Jd) to move the DW out from the notch area. The DW internal structure was also transformed from transverse to anti-vortex in the depinning process. The PMA CoFeB materials also showed that the notch dept size was related proportionally to the increased Jd. However, the Jd value increased significantly in the notch dept size larger than 20 nm. Furthermore, the Jd values are more influenced by the decreasing nanowire thickness. This characteristic was related to the increase of the cross-sectional area, so the demagnetization energy was dominated on the DW in the pinning condition. It is understood that the increase of DW depinning energy is caused by the DW structural change in the larger nanowire.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Christianto
Abstrak :
Dalam bahan feromagnetik terdapat daerah-daerah yang memiliki magnetisasi dalam keadaaan saturasi, yang disebut magnetic domain. Diantara dua buah domain yang berbeda terdapat suatu daerah transisi, yang disebut Domain wall. Domain wall terbentuk akibat adanya interaksi momen magnet yang bersebelahan melalui interaksi exchange dan interaksi demagnetisasi. Ketika domain wall mendapat pengaruh arus listrik, domain wall akan mengalami dinamika yang merupakan akibat munculnya efek spin transfer torque dan dapat menyebabkan perubahan struktur pada domain wall. Kecepatan dinamika domain wall akan bertambah hingga mencapai arus kritis, dimana kecepatan akan berkurang dan seringkali disertai dengan perubahan struktur pada domain wall. Penelitian ini dilakukan dengan menggunakan simulasi mikromagnetik, yang diselesaikan dengan menggunakan persamaan Landau-Lifshitz-Gilbert (LLG). ......In the ferromagnetic materials, there are regions contain the saturation magnetization, called magnetic domains. Between two different domains there is a transition region, called Domain wall. Domain wall is formed by the interaction of the magnetic moment through exchange interaction and demagnetization interaction.When a domain wall is under applied electric current, the domain wall dynamics will occur as the effect of spin transfer torque and it can cause structural changes in the domain wall. The dynamics of the domain wall velocity will increase until it reaches the critical current, where the speed will be reduced and often accompanied by structural changes in the domain wall. This study is performed using micromagnetic simulation, which is solved using the Landau-Lifshitz-Gilbert (LLG) equation.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54848
UI - Skripsi Membership  Universitas Indonesia Library
cover
Candra Kurniawan
Abstrak :
Pada thesis ini telah dilakukan studi dinamika domain wall (DW) magnetik pada nanowire Permalloy dengan notch simetris yang terinduksi oleh pulsa arus listrik terpolarisasi. Analisis dilakukan menggunakan pendekatan mikromagnetik menggunakan perangkat lunak OOMMF berdasarkan persamaan Landau-Lifshitz- Gilbert (LLG) yang dimodifikasi. Dalam persamaan LLG tersebut diperkenalkan besaran tambahan berupa kecepatan spin (u) dan konstanta non-adiabatik (β) yang menunjukkan suku transfer spin. Sebuah defek pada nanowire Permalloy dibuat berbentuk notch segitiga simetris sebagai potensial pinning untuk DW. Penelitian dilakukan dengan mengamati efek lebar wire, ukuran notch, dan variasi konstanta non-adiabatik terhadap sifat depinning DW di sekitar pusat notch. Berdasarkan hasil simulasi ditunjukkan bahwa penurunan nilai arus depinning (Jd) dipengaruhi oleh peningkatan lebar wire yang sesuai dengan fenomena yang terjadi pada kasus induksi medan magnet. Pada ukuran notch 40 nm, nilai Jd menurun secara drastis namun berfluktuasi sebanding dengan peningkatan ukuran notch. Diketahui juga bahwa lebar wire tidak berpengaruh terhadap waktu depinning untuk ukuran notch kurang dari 70 nm. Secara umum, proses depinning pada DW diikuti oleh perubahan struktur dari transverse wall menjadi anti-vortex wall. Berdasarkan hasil simulasi diketahui bahwa efek konstanta non-adiabatik tidak signifikan pada ukuran notch kurang dari 70 nm. Namun pada ukuran yang lebih besar terjadi fluktuasi pada karakteristik depinning DW. Hasil yang menarik diamati pada β = 0.04 yaitu ukuran notch tidak mempengaruhi waktu depinning DW. Hal ini dapat dipahami bahwa perubahan struktur DW berperan penting terhadap karakteristik depinning DW. ......We have investigated the magnetic domain wall (DW) dynamics in symmetrical notched Permalloy nanowires induced by nanosecond current pulse using micromagnetic approach. The public micromagnetic software OOMMF has been utilized to simulate the domain wall behavior based on modified Landau- Lifshitz-Gilbert (LLG) Equation. The spin transfer term was added to the LLG equation by introduced the spin drift velocity (u) and non-adiabatic constant (β) values. The constriction in the Permalloy nanowires was shaped as double symmetrical triangular notch and used as the DW pinning potential. We have observed the effect of wire width, notch size, and non-adiabatic constant to the DW depinning behavior around the center of notch. We observed that the increasing of wire width was influenced to the decreasing of depinning current density (Jd) as in the field driven case. At notch size of 40 nm, the Jd value was sharply decreased and yield slight fluctuation as the increasing of notch size. It also known that wire width was not much affect the DW depinning time for notch size smaller than 70 nm. Generally the DW depinning process was accompanied by the structure transition from transverse wall to anti-vortex wall. We observed that in the notch size smaller than 70 nm the effect of non-adiabatic constant was not significant, but at the larger notch size recorded a huge fluctuation of DW characteristics. The interesting result was founded at β = 0.04 which the depinning time was not affected by the increasing of notch size. It was understood that the DW inner structure stabilities play the role for the insensitivity of DW depinning behavior.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43803
UI - Tesis Membership  Universitas Indonesia Library
cover
Abstrak :
This book introduces readers to the latest advances in sensing technology for a broad range of non-volatile memories (NVMs). Challenges across the memory technologies are highlighted and their solutions in mature technology are discussed, enabling innovation of sensing technologies for future NVMs. Coverage includes sensing techniques ranging from well-established NVMs such as hard disk, flash, Magnetic RAM (MRAM) to emerging NVMs such as ReRAM, STTRAM, FeRAM and Domain Wall Memory will be covered.
Switzerland: Springer Cham, 2019
e20502357
eBooks  Universitas Indonesia Library
cover
Mardona
Abstrak :
Dalam penelitian ini telah dilakukan pengamatan dinamika domain-wall dan efek anisotropi pada material ferromagnet Co dan Ni dalam bentuk nanowire. Pengamatan dinamika domain-wall dan efek anisotropi dilakukan dengan menggunakan simulasi micromagnetic berdasarkan persamaan Landau-Lifshitz-Gilbert (LLG) menggunakan perangkat lunak micromagnetic OOMMF. Ukuran dan geometri nanowire simulasi micromagnetic mempunyai panjang 2000 nm dengan variasi lebar 100 nm, 150 nm, dan 200 nm dan tebal 2,5 nm dan 5,0 nm. Faktor damping 0,01 dan ukuran sel dengan t adalah ketebalan nanowire. Simulasi micromagnetic dilakukan secara sistematis dengan memberikan medan magnet luar dalam bentuk pulsa dengan waktu pulsa 1 ns dan variasi amplitudo sebagai besarnya medan magnet luar. Hasil pengamatan memperlihatkan kecepatan domain-wall meningkat dengan bertambahnya medan magnet luar sampai mencapai medan magnet luar maksimum yang dikenal dengan medan Walker breakdown. Kemudian kecepatan domain-wall menurun dengan bertambahnya medan magnet luar setelah medan Walker breakdown. Hal yang sangat menarik dari hasil pengamatan bahwa struktur domain-wall memperlihatkan struktur berbentuk transverse sebelum Walker breakdown dan timbul struktur vortex/anti-vortex wall sesudah Walker breakdown. Selanjutnya, analisis energi sistem juga dilakukan yaitu energi total, energi Zeeman, energi exchange, energi anisotropi, dan energi demagnetisasi. Hasil analisis menunjukkan energi demagnetisasi meningkat dengan bertambahnya medan magnet luar sebelum Walker breakdown dan menurun ketika struktur vortex/antivortex wall terbentuk sesudah Walker breakdown. Efek anisotropi dari material Co dan Ni diperlihatkan pada profil kecepatan domain-wall dan kerapatan energi total nanowire. Profil kecepatan domain-wall memperlihatkan kecepatan menurun secara landai di sekitar Walker breakdown dibandingkan material Py yang menurun cukup curam. Kerapatan energi total untuk material Co lebih besar dari material Py karena pengaruh nilai kontansta anisotropi bernilai positif dan material Ni yang lebih kecil dibandingkan material Py karena nilai konstanta anisotropi bernilai negatif. Hasil ini memperlihatkan efek anisotropi mempengaruhi dinamika domain-wall dalam nanowire dan harus dipertimbangkan dalam merealisasikan devais-devais berbasis magnet di masa depan. ......In this work, we have investigated the domain wall dynamic and anisotropy effect of materials Co and Ni in ferromagnetic nanowires by means of micromagnetic simulation. The simulation is carried out by the public micromagnetic software based on Landau-Lifshitz-Gilbert (LLG) equation. The length of ferromagnetic nanowire is set to be 2000 nm corresponds to width variation from 100 nm to 200 nm and the thickness variation are 2.5 nm and 5.0 nm. The damping factor is 0.01 and the cell size is with t is the thickness. The simulation is applied by the external magnetic pulsed with length of 1 ns and the variation the external magnetic field strength. The calculation showed the domain wall velocity increases as the external magnetic field increases and reach the maximum the external field as known the Walker breakdown. Then the domain wall velocity abruptly decreases after the Walker breakdown. Very interestingly, before the Walker breakdown, the domain wall exhibits the transverse wall while the vortex/anti-vortex wall after the Walker breakdown. We have also investigated the energy system that consists of the total energy, Zeeman energy, the exchange energy, the demagnetization, and the anisotropy energy. The analyzed showed that the demagnetization increases as the external field increases before the Walker breakdown and decreases as the vortex/anti-vortex formed after the Walker breakdown. The anisotropy effect of Co and Ni ferromagnetic is shown by the domain wall velocity and the total energy density profile. The velocity shows slightly decreasing around the Walker breakdown compare with the material Py. The total energy density of Co shows large than Py since the anistropy contant is positive (K > 0) and Ni shows small that Py since the anisotropy is negative (K < 0). This means that the effect anisotropy also contributes the domain wall motion in ferromagnetic nanowire and must be considered in the realization magnetic devices in the future.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T29862
UI - Tesis Open  Universitas Indonesia Library
cover
Andy Sumarta
Abstrak :
Telah dilakukan pengamatan mengenai dinamika domain wall pada bahan Permalloy berbentuk nanowire dengan menggunakan software simulasi mikromagnetik OOMMF berdasarkan persamaan Landau-Lifshitz-Gilbert (LLG). Pengamatan dinamika domain wall dilakukan pada nanowire dengan panjang 2000 nm, variasi lebar dari 100 sampai 200, dan variasi ketebalan 2,5 nm dan 5,0 nm dibawah pengaruh medan magnet luar dalam bentuk pulsa. Kecepatan domain wall bertambah ketika medan magnet luar yang diberikan di perbesar dan kemudian mengalami penurunan scara drastis setelah medan magnet luar yang diberikan melampaui medan magnet kritis yang di sebut medan Walker breakdown. Sebelum medan magnet luar yang diberikan melebihi nilai medan Walker breakdown, domain wall bergerak dengan mempertahankan struktur transverse. Setelah melampaui nilai medan Walker breakdown, struktur transverse pada domain wall mengalami perubahan menjadi struktur vortex/anti-vortex. ......We have investigated the domain wall dynamics in Permalloy material with nanowire shape using public micromagnetic simulation software, OOMMF based on the Landau-Lifshitz-Gilbert equation. We have observed domain wall dynamic for different thickness and width respect to external magnetic field. Domain wall velocity increases as the external magnetic field increase and abruptly decreases after critical field which is called Walker breakdown field. Before Walker breakdown, domain wall moving while keeping transverse inner structure, and after Walker breakdown, transverse inner structure transform to vortex/anti-vortex inner structure.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1065
UI - Skripsi Open  Universitas Indonesia Library
cover
Sulaiman Hawibowo
Abstrak :
Pada penelitian ini telah dilakukan pengamatan dinamika domain-wall pada material feromagnet berbasis Co CoFe, CoFeB dan Fe FePt, FePd dalam bentuk nanowire. Analisis dilakukan dengan menggunakan simulasi mikromagnetik berdasarkan persamaan Landau-Lifshitz Gilbert LLG yang dimodifikasi menggunakan perangkat lunak mikromagnetik OOMMF Object Oriented Micromagnetic Framework Donahue and Porter, 1999. Ukuran dan geometri dari nanowire mempunyai panjang 2000 nm, dengan variasi lebar 50 nm, 100 nm, 150 nm dengan tebal 2,5 nm dan 5 nm. Faktor damping 0,05 dan ukuran sel 5 x 5 x t nm3 dengan t adalah ketebalan nanowire. Simulasi dinamika domain-wall ini menggunakan pulsa medan magnet aktif dengan durasi 0,5 ns serta variasi pemberain medan magnet luar menyatakan amplitudo pulsa. Hasil simulasi memperlihatkan kecepatan domain-wall meningkat dengan bertambahnya medan magnet luar sampai medan magnet luar maksimum atau yang dikenal dengan medan Walker Breakdown WB . Kemudian, kecepatan domain-wall akan menurun drastis. Menariknya, kondisi sebelum medan WB menunjukan struktur transverse-wall sedangkan struktur vortex/antivortex-wall muncul setalah medan WB. Jika pemberian variasi tebal dan lebar pada geometri nanowire semakin besar maka hasil menunjukkan bahwa medan WB akan semakin menurun. Hasil pengamatan juga melibatkan energi demagnetisasi yang meningkat dengan bertambahnya medan magnet luar sebelum medan WB dan energi exchange yang meningkat ketika struktur vortex/antivortex-wall muncul setelah medan WB.
In this study we have observed the propagation of domain wall in Co based ferromagnetic materials CoFe, CoFeB and Fe FePt, FePd in the form of nanowire. The analysis was performed using a micromagnetic simulation based on the Landau Lifshitz Gilbert LLG equation modified using the OOMMF Object Oriented Micromagnetic Framework micromagnetic software Donahue and Porter, 1999. The size and geometry of nanowire has a length of 2000 nm, with variations in width 50 nm, 100 nm, 150 nm with 2.5 nm and 5 nm thickness. Damping factor 0.05 and cell size 5 x 5 x t nm3 with t is nanowire thickness. This domain wall dynamics simulation uses active magnetic field pulses with a duration of 0.5 ns and an external magnetic field variation represents pulse amplitudes. The simulation results show that the domain wall velocity increases with the increase of the external magnetic field to the maximum outer magnetic field known as the Walker Breakdown WB field. Then, the domain wall speed will decrease dramatically. Interestingly, the condition before the WB field shows the transverse wall structure whereas the vortex antivortex wall structure appears after the WB field. If the variation of thickness and width in nanowire geometry is greater then the result indicates that the WB field will decrease further. The observations also involve increased demagnetization energy by increasing the external magnetic field before the WB field and increasing energy exchange when the vortex antivortex wall structure appears after the WB field.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library