Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
cover
Risna Diandarma
Abstrak :
ABSTRACT
Overdispersi sering kali menjadi kendala dalam memodelkan count data dikarenakan distribusi Poisson yang sering digunakan untuk memodelkan count data tidak dapat menanggulangi data overdispersi. Telah diperkenalkan beberapa distribusi yang dapat digunakan sebagai alternatif dari distribusi Poisson dalam menanggulangi overdispersi pada data. Namun, distribusi yang ditawarkan tesebut memiliki kompleksitas yang lebih tinggi dibanding distribusi Poisson dalam hal jumlah parameter yang digunakan. Untuk itu, ditawarkan distribusi baru yang memiliki sebaran mirip dengan distribusi Poisson, yaitu distribusi Lindley. Namun, distribusi Lindley merupakan distribusi kontinu sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, dilakukan diskritisasi pada distribusi Lindley menggunakan metode yang mempertahankan fungsi survival dari distribusi Lindley. Distribusi hasil dari diskritisasi distribusi Lindley tersebut memiliki satu parameter dan dapat digunakan untuk memodelkan data overdispersi sehingga cocok digunakan sebagai alternatif dari distribusi Poisson dalam memodelkan count data yang overdispersi. Distribusi hasil dari diskritisasi distribusi Lindley tersebut biasa disebut distribusi Discrete Lindley. Dalam penulisan ini diperoleh karakteristik dari distribusi Discrete Lindley yang unimodal, menceng kanan, memiliki kelancipan yang tinggi, dan overdispersi. Berdasarkan simulasi numerik, diperoleh pula karakteristik dari parameter distribusi Discrete Lindley yang memiliki bias dan MSE besar pada sekitaran nilai parameter exp(-1).
ABSTRACT
Overdispersion often being a problem in modeling count data because the Poisson distribution that is often used to modeling count data cannot conquer the overdispersion data. Several distributions have been introduced to be used as an alternative to the Poisson distribution on conquering dispersion in data. However, that alternative distribution has higher complexity than Poisson distribution in the number of parameters used. Therefore, a new distribution with similar distribution to Poisson is offered, that is Lindley distribution. Lindley distribution is a continuous distribution, then it cannot be used to modeling count data. Hence, discretization on Lindley distribution should be done using a method that maintain the survival function of Lindley distribution. Result distribution from discretization on Lindley distribution has one parameter and can be used to modeling overdispersion data so that distribution is appropriate to be used as an alternative to Poisson distribution in modeling overdispersed count data. The result distribution of Lindley distribution discretization is commonly called Discrete Lindley distribution. In this paper, characteristics of Discrete Lindley distribution that are obtained are unimodal, right skew, high fluidity and overdispersion. Based on numerical simulation, another charasteristic of parameter is also obtained from Discrete Lindley distribution that has a large bias and MSE when parameter value around exp(-1).
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfifah Meytrianti
Abstrak :
Distribusi Poisson adalah distribusi yang biasa digunakan untuk memodelkan count data dengan asumsi nilai mean dan variansi memiliki nilai yang sama (ekuidispersi). Dalam kenyataannya, sebagian besar count data memiliki nilai mean yang lebih kecil dari variansi (overdispersi) dan distribusi Poisson tidak cocok digunakan untuk memodelkannya. Dengan demikian, beberapa distribusi alternatif telah diperkenalkan untuk mengatasi masalah ini. Salah satunya adalah distribusi Shanker yang hanya memiliki satu parameter. Namun, distribusi Shanker adalah distribusi kontinu, sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, distribusi baru ditawarkan yaitu distribusi Poisson-Shanker. Distribusi Poisson-Shanker diperoleh dengan mencampurkan distribusi Poisson dan Shanker, dengan distribusi Shanker sebagai mixing distribution. Hasil yang diperoleh adalah distribusi campuran yang memiliki satu parameter dan dapat digunakan untuk memodelkan count data yang overdispersi. Dalam tugas akhir ini, diperoleh bahwa distribusi Poisson-Shanker memiliki beberapa sifat yaitu unimodal, overdispersi, hazard rate naik, serta diperoleh koefisien kurtosis dan skewness. Selain itu, diperoleh pula empat raw momen dan momen sentral pertama. Metode yang digunakan untuk menaksir parameter adalah metode maximum likelihood dan diselesaikan dengan menggunakan iterasi numerik. Dilakukan ilustrasi pada data untuk menggambarkan distribusi Poisson-Shanker. Karakteristik parameter dari distribusi Poisson-Shanker diperoleh dengan simulasi numerik dengan beberapa variasi nilai parameter dan ukuran sampel. Hasil yang diperoleh adalah rata-rata nilai MSE dan bias taksiran parameter akan naik seiring pertambahan nilai parameter untuk suatu nilai n dan akan turun seiring pertambahan nilai n untuk suatu nilai parameter.
Poisson distribution is a common distribution for modelling count data with assumption mean and variance has the same value (equidispersion). In fact, most of the count data have mean that is smaller than variance (overdispersion) and Poisson distribution cannot be used for modelling this kind of data. Thus, several alternative distributions have been introduced to solve this problem. One of them is Shanker distribution that only has one parameter. Since Shanker distribution is continuous distribution, it cannot be used for modelling count data. Therefore, a new distribution is offered that is Poisson-Shanker distribution. Poisson-Shanker distribution is obtained by mixing Poisson and Shanker distribution, with Shanker distribution as the mixing distribution. The result is a mixture distribution that has one parameter and can be used for modelling overdispersion count data. In this paper, we obtain that Poisson-Shanker distribution has several properties are unimodal, overdispersion, increasing hazard rate, and right skew. The first four raw moments and central moments have been obtained. Maximum likelihood is a method that is used to estimate the parameter, and the solution can be done using numerical iterations. A real data set is used to illustrate the proposed distribution. The characteristics of the Poisson-Shanker distribution parameter is also obtained by numerical simulation with several variations in parameter values and sample size. The result is average MSE and bias of the estimated parameter will increase when the parameter value rises for a value of n and will decrease when the value of n rises for a parameter value.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Situmorang, Venda Damianus
Abstrak :
Distribusi Poisson adalah distribusi yang sangat banyak dipakai dalam pemodelan data cacahan. Namun, distribusi Poisson memiliki keterbatasan yaitu kesamaan antara nilai mean dan variansi (equidispersi) dari data yang akan dimodelkan, sehingga distribusi Poisson tidak cocok digunakan untuk memodelkan data yang tidak memenuhi syarat tersebut. Kasus overdispersi (variansi lebih besar daripada nilai mean) dan underdispersi (variansi lebih kecil daripada nilai mean) sering kali ditemukan dalam kasus riil. Oleh karena itu, distribusi baru perlu dikembangkan dalam menangani data dengan kasus ini. Salah satu distribusi yang dapat menangani kasus ini adalah distribusi hyper-Poisson. Distribusi ini dapat diturunkan melalui hubungan rekursif dari keluarga distribusi Lagrangian Katz yang merupakan keluarga distribusi data cacahan. Distribusi ini juga dapat diklasifikasi berdasarkan parameternya, sehingga dapat digunakan untuk mengatasi kasus overdispersi dan underdispersi secara fleskibel. Pada skripsi ini dijelaskan mengenai pembentukan fungsi distribusi hyper-Poisson, karakterisitik dari distribusi hyper-Poisson, dan penggunaan distribusi hyper-Poisson dalam memodelkan data riil terkait kasus overdispersi dan underdispersi. ...... The Poisson distribution is a distribution that is very widely used in count data modeling. However, the Poisson distribution has a limitation, namely the equality between the mean and variance values (equidispersion) of the data to be modeled, so the Poisson distribution is no longer suitable for modeling data that does not meet this condition. Cases of overdispersion (variance greater than the mean value) and underdispersion (variance smaller than the mean value) are often found in real cases. Therefore, new distributions need to be developed to handle data with these cases. One distribution that can handle this case is the hyper-Poisson. This distribution can be derived through the recursive relation of the Lagrangian Katz family of distribution, which is a family of distribution of count data. This distribution can also be classified based on its parameter, so it can be used to handle overdispersion and underdispersion cases flexibly. This thesis studies how to generate the distribution function of the hyper-Poisson distribution, the characteristics of the hyper-Poisson distribution, and the use of the hyper-Poisson distribution in modeling real data related to overdispersion and underdispersion cases.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadhya Fadlillah
Abstrak :
ABSTRAK
Di Indonesia, Jaminan Kesehatan Nasional merupakan salah satu program jaminan sosial berupa perlindungan kesehatan, yang diselenggarakan oleh Badan Penyelenggara Jaminan Sosial BPJS Kesehatan dan wajib diikuti oleh seluruh rakyat Indonesia. Salah satu sistem pembayaran yang digunakan untuk klaim-klaim yang berasal dari fasilitas kesehatan seperti rumah sakit adalah Indonesia-Case Based Groups INA-CBGs , yaitu sistem pembayaran prospektif yang ditetapkan berdasarkan pengelompokkan diagnosis dan prosedur, tanpa memperhitungkan jenis dan jumlah pelayanan kesehatan yang diberikan. Penelitian ini bertujuan untuk memodelkan aggregate klaim pada pelayanan kesehatab rawat inap kelas III di rumah sakit dengan menggunakan model Compound, yang terdiri dari model besar klaim yang diperoleh dari besar biaya yang dikeluarkan oleh rumah sakit selama proses pemberian pelayanan kesehatan dengan menggunakan distribusi gamma sebagai kasus khusus dari Generalized Linear Models GLM . Sedangkan model frekuensi klaim diperoleh dari banyaknya kejadian yang terjadi pada setiap kelompok kasus dengan menggunakan regresi Poisson sebagai kasus khusus dari Generalized Linear Models GLM . Data yang digunakan dalam penelitian ini adalah data klaim pelayanan rawat inap kelas III selama tahun 2014 pada salah satu rumah sakit tipe D di Regional V. Dalam model frekuensi klaim, faktor-faktor yang secara signifikan mempengaruhi antara lain adalah kode INA-CBGs, kategori umur pasien dan kategori cara pulang pasien. Sedangkan faktor faktor yang secara signifikan mempengaruhi model besaran klaim adalah kode INA-CBGs, jenis kelamin, kategori umur pasien dan kategori cara pulang pasien.
ABSTRACT In Indonesia, national health insurance is a social security program for health protection, held by Social Security Institution of Health and all Indonesian people must be participated in it. The payment system that used to pay claim for health facilities such as hospital is Indonesia Case Based Groups INA CBGs , i.e. prospective payment system which set from diagnose, procedure, and severity level grouping, without counting the kinds and amount of health services provided. Case Based Groups CBGs is the way patient care is paid, based on diagnosis and procedure, which will be relatively the same amount. This research aims to construct the total loss model for inpatients who have services in hospital using compound model, where its claim cost model for every cases constructed from the amount of the tariff issued by hospital during the treatment period using Gamma regression as a special case of Generalized Linear Models GLM and give the result that the influence factor are category of inpatient disease INA CBGs code , sex, category of age, and last status of inpatient category. While, frequency claim model constructed from frequency case groups happened in hospital using GLM Poisson and the factor that influence are category of inpatient disease INA CBGs code , sex, category of age, and last status of inpatient category. The data used in this research is inpatient claim data during 2014 in a D type hospital on Regional V.
Depok: Universitas Indonesia, 2017
S66201
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chika Tsabita Aurellia
Abstrak :
Sistem bonus malus yang biasanya digunakan pada perusahaan asuransi adalah sistem bonus malus klasik, yang perhitungannya hanya didasarkan pada riwayat banyaknya klaim pemegang polis. Namun, hal ini akan menimbulkan ketidakadilan karena besar kerugian pemegang polis bervariasi, sehingga pada penelitian ini dibangunlah modifikasi sistem bonus malus yang juga mempertimbangkan severitas klaim pemegang polis di masa lalu dengan kredibilitas bivariat yang menggunakan metode Bayesian. Dikarenakan klaim yang diajukan masing-masing pemegang polis dapat bernilai sangat besar ataupun sangat kecil, maka ditentukanlah suatu nilai batas untuk memisahkan kedua jenis klaim tersebut. Distribusi yang digunakan untuk banyaknya klaim adalah distribusi Poisson Gamma. Sedangkan, total banyaknya klaim yang berukuran lebih besar dari nilai batas mengikuti distribusi Binomial Beta. Premi bonus malus akan didapatkan dengan menghitung rasio antara premi Bayes dan premi prior, yang masing-masing didapatkan dari hasil ekspektasi distribusi posterior dan distribusi prior secara berurutan. Aplikasi pada data asuransi kendaraan bermotor asal Swedia menunjukkan bahwa besar premi yang dibayarkan pemegang polis berbanding lurus dengan severitas klaim dan banyaknya klaim atau dengan kata lain model yang dihasilkan memberikan biaya premi yang lebih rendah untuk pemegang polis yang memiliki riwayat klaim bernilai lebih kecil dari nilai batas, begitupun sebaliknya. ...... The bonus-malus system that is commonly used by insurance companies is the traditional bonus-malus system, which is based solely on the policyholder's claims frequency history. However, this approach can lead to unfairness due to variations in the severity of the policyholder's losses. Therefore, this thesis will focus on modifying the bonus-malus premium determination system to consider both the frequency and severity of the policyholder's past claims using bivariate credibility with Bayesian methods. Since claims made by policyholders can have significantly different values, can be very large or very small, a threshold is established to distinguish between these two types of claims. The claim frequency will follow a Poisson Gamma distribution. On the other hand, total claims exceeding the threshold value will follow a Binomial Beta distribution. The bonus-malus premium will be obtained by calculation the ratio between the Bayesian premium and the prior premium, which respectively will be derived from the expected value of the posterior distribution and the prior distribution. By applying this model to the automobile insurance data from Swedia, it demonstrates that the premium amount paid by the policyholder is directly proportional to the severity and frequency of claims. In other words, the resulting model offers lower premium costs for policyholders with a claims history below the threshold value and higher costs for those above it.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library