Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Budi Rahayu
Abstrak :
Asumsi-asumsi pada Model Linier Yang Umum {Generalized Linier Model atau disingkat GLM) merupakan perluasan dari asumsi-asumsi pada model linier klasik. Pada tugas akhir ini akan ditunjukkan bahwa parameter ? untuk model linier yang umum yang mempunyai nilai-nilai yang tidak diketahui dapat ditaksir dengan menggunakan prosedur iterative weighted least square. Salah satu contoh model linier yang umum (GLM) yaitu model regresi digunakan terhadap data polusi udara di daerah teluk San Fransisco. Dengan menggunakan data tersebut dapat ditunjukkan sensitifitas model regresi yang ditaksir terhadap asumsi distribusi probabilitas error c yang berbeda (yaitu terhadap distribusi probabilitas Normal dan Gamma). Selain itu dapat ditunjukkan pula mengenai model probabilitas yang cocok untuk menggambarkan data polusi udara tersebut.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Zafira Hafidzah
Abstrak :
Kecelakaan adalah salah satu risiko yang dapat berakibat fatal pada kendaraan bermotor. Berdasarkan data Kementerian Perhubungan, di Indonesia telah terjadi 103.645 kasus kecelakaan kendaraan bermotor pada 2021. Tingkat kecelakaan kendaraan bermotor berpotensi meningkat setiap tahunnya seiring kenaikan signifikan dari pemilik kendaraan. Selain kecelakaan, ancaman risiko lain, seperti kehilangan, pencurian, dan kebakaran/ledakan mendorong masyarakat membeli asuransi kendaraan bermotor. Asosiasi Asuransi Umum Indonesia (AAUI) menyampaikan kenaikan 345% pembelian asuransi kendaraan bermotor di Indonesia pada tahun 2022. Tren ini menstimulasi penetapan tarif premi asuransi kendaraan bermotor yang kompetitif antar perusahaan asuransi. Perhitungan tarif premi didasarkan atas data historis frekuensi klaim dan severitas klaim. Kedua komponen tersebut bergantung pada faktor-faktor risiko nasabah. Frekuensi klaim dan severitas klaim dimodelkan sebagai variabel respons dalam pemodelan Generalized Linear Model (GLM), dimana faktor-faktor risiko nasabah menjadi variabel prediktor model. Pemodelan frekuensi klaim dan severitas klaim lazim dilakukan secara independen, tetapi tidak jarang ditemukan ketergantungan antar keduanya. Data historis frekuensi klaim dan severitas klaim dalam penelitian ini menunjukkan nilai ketergantungan yang rendah, tetapi signifikan. Oleh karena itu, penelitian ini menganalisis performa dua model GLM dalam perhitungan data frekuensi klaim dan severitas klaim tersebut, yaitu GLM Tweedie dan GLM copula. GLM Tweedie digunakan untuk memodelkan frekuensi klaim dan severitas klaim secara independen, sedangkan GLM copula digunakan untuk memodelkan frekuensi klaim dan severitas klaim secara dependen. Pada pemodelan GLM Tweedie, distribusi frekuensi klaim dan severitas klaim yang digunakan adalah distribusi Tweedie untuk keduanya, sedangkan pada pemodelan GLM copula, distribusi frekuensi klaim yang digunakan adalah distribusi Zero-Truncated Poisson (ZTP) dan distribusi severitas klaim yang digunakan adalah distribusi Gamma. Root Mean Square Error (RMSE) digunakan dalam menganalisis performa model. Semakin kecil nilai RMSE, semakin baik performa model tersebut. Hasil pemodelan data menunjukkan nilai RMSE yang lebih kecil pada model GLM Tweedie untuk frekuensi klaim dan severitas klaim. ......Traffic accident is one of the risks that can be fatal to automobile vehicles. Based on data from the Ministry of Transportation, there have been 103,645 cases of automobile vehicle accidents in Indonesia in 2021. The rate of motor vehicle accidents has the potential to increase every year in line with the significant increase in automobile vehicle owners. Apart from traffic accidents, other risk threats, such as loss, theft, and fire/explosion encourage people to buy automobile vehicle insurance. In 2022, Asosiasi Asuransi Umum Indonesia (AAUI) reported a 345% increase in purchases of automobile vehicle insurance in Indonesia. This trend stimulates the setting of competitive automobile vehicle insurance premium rates among insurance companies. Premium rate calculation is based on historical data on claim frequency and claim severity. Both components depend on the customer's risk factors. Claim frequency and claim severity are modeled as response variables in the Generalized Linear Model (GLM) modeling, while customer risk factors are the predictor variables of the model. Modeling of claim frequency and claim severity is usually done independently, but it is not uncommon to find dependencies between both. Historical claim frequency and claim severity data in this study shows a low but significant dependency value. Therefore, this study analyzes the performance of two GLM models in calculating claim frequency and claim severity data, namely GLM Tweedie and GLM copula. The GLM Tweedie is used to model the claim frequency and the claim severity independently, while the GLM copula is used to model the claim frequency and the claim severity dependently. In the GLM Tweedie modeling, the claim frequency and the claim severity is considered Tweedie distributed for both, whereas in the GLM copula modeling, the claim frequency distribution is the Zero-Truncated Poisson (ZTP) distribution and the claim severity distribution is the Gamma distribution. Root Mean Square Error (RMSE) is used in analyzing model performance. A smaller RMSE value indicates better model performance. The results of data modeling show a smaller RMSE value in the GLM Tweedie model for claim frequency and claim severity.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadhya Fadlillah
Abstrak :
ABSTRAK
Di Indonesia, Jaminan Kesehatan Nasional merupakan salah satu program jaminan sosial berupa perlindungan kesehatan, yang diselenggarakan oleh Badan Penyelenggara Jaminan Sosial BPJS Kesehatan dan wajib diikuti oleh seluruh rakyat Indonesia. Salah satu sistem pembayaran yang digunakan untuk klaim-klaim yang berasal dari fasilitas kesehatan seperti rumah sakit adalah Indonesia-Case Based Groups INA-CBGs , yaitu sistem pembayaran prospektif yang ditetapkan berdasarkan pengelompokkan diagnosis dan prosedur, tanpa memperhitungkan jenis dan jumlah pelayanan kesehatan yang diberikan. Penelitian ini bertujuan untuk memodelkan aggregate klaim pada pelayanan kesehatab rawat inap kelas III di rumah sakit dengan menggunakan model Compound, yang terdiri dari model besar klaim yang diperoleh dari besar biaya yang dikeluarkan oleh rumah sakit selama proses pemberian pelayanan kesehatan dengan menggunakan distribusi gamma sebagai kasus khusus dari Generalized Linear Models GLM . Sedangkan model frekuensi klaim diperoleh dari banyaknya kejadian yang terjadi pada setiap kelompok kasus dengan menggunakan regresi Poisson sebagai kasus khusus dari Generalized Linear Models GLM . Data yang digunakan dalam penelitian ini adalah data klaim pelayanan rawat inap kelas III selama tahun 2014 pada salah satu rumah sakit tipe D di Regional V. Dalam model frekuensi klaim, faktor-faktor yang secara signifikan mempengaruhi antara lain adalah kode INA-CBGs, kategori umur pasien dan kategori cara pulang pasien. Sedangkan faktor faktor yang secara signifikan mempengaruhi model besaran klaim adalah kode INA-CBGs, jenis kelamin, kategori umur pasien dan kategori cara pulang pasien.
ABSTRACT In Indonesia, national health insurance is a social security program for health protection, held by Social Security Institution of Health and all Indonesian people must be participated in it. The payment system that used to pay claim for health facilities such as hospital is Indonesia Case Based Groups INA CBGs , i.e. prospective payment system which set from diagnose, procedure, and severity level grouping, without counting the kinds and amount of health services provided. Case Based Groups CBGs is the way patient care is paid, based on diagnosis and procedure, which will be relatively the same amount. This research aims to construct the total loss model for inpatients who have services in hospital using compound model, where its claim cost model for every cases constructed from the amount of the tariff issued by hospital during the treatment period using Gamma regression as a special case of Generalized Linear Models GLM and give the result that the influence factor are category of inpatient disease INA CBGs code , sex, category of age, and last status of inpatient category. While, frequency claim model constructed from frequency case groups happened in hospital using GLM Poisson and the factor that influence are category of inpatient disease INA CBGs code , sex, category of age, and last status of inpatient category. The data used in this research is inpatient claim data during 2014 in a D type hospital on Regional V.
Depok: Universitas Indonesia, 2017
S66201
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hepta Yuniarta
Abstrak :
ABSTRAK


Salah satu bagian penting dari ilmu aktuaria adalah teori risiko yang mempunyai 2 cabang utama yakni teori risiko individu dan teori risiko kolektif. Model yang dibentuk untuk distribusi total uang klaim risiko individu adalah model risiko individu, sedangkan untuk risiko kolektif adalah model risiko kolektif. Metode konvolusi digunakan untuk implementasi perhitungan distribusi total uang klaim untuk kedua model tersebut.

Pendekatan normal digunakan sebagai pendekatan distribusi total uang klaim untuk model risiko individu, sedangkan untuk model risiko kolektif selain pendekatan normal juga digunakan pendekatan translasi distribusi Gamma.

1991
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library