Ditemukan 2 dokumen yang sesuai dengan query
Ridho Okta Pawarestu
Abstrak :
Distribusi Transmuted Exponentiated Exponential merupakan generalisasi dari distribusi Exponentiated Exponential yang dibentuk dengan menggunakan metode quadratic rank transmutation maps (QRTM). Distribusi Transmuted Exponentiated Exponential merupakan salah satu distribusi kontinu yang mampu memodelkan data dengan hazard rate naik, turun, bathtub, dan non-monoton. Pada tugas akhir ini akan dibahas konstruksi dari distribusi Transmuted Exponentiated Exponential. Karakteristik-karakteristik distribusi yang meliputi fungsi kepadatan probabilitas, fungsi distribusi, dan hazard rate dari distribusi Transmuted Exponentiated Exponential juga dijelaskan lebih lanjut. Pada bagian akhir, diberikan suatu aplikasi dari distribusi Transmuted Exponentiated Exponential pada suatu data lifetime.
......
Transmuted Exponentiated Exponential distribution is a generalization of Exponentiated Exponential distribution which formed using a method called quadratic rank transmutation maps (QRTM). Transmuted Exponentiated Exponential distribution is a continued distribution which can model increasing, decreasing, bathtub, and non-monotone hazard rate. In this paper, it will be explained how to form Transmuted Exponentiated Exponential distribution. Characteristics of distribution such as, probability density function, distribution function, and hazard rate of Transmuted Exponentiated Exponential distribution will be explained further. Finally, a set of lifetime data will be analyzed using Transmuted Exponentiated Exponential distribution as an illustration.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S61730
UI - Skripsi Membership Universitas Indonesia Library
Margaretha
Abstrak :
Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1.
......Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library