Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Ardanareswari Chaerani
Abstrak :
Glaukoma adalah salah satu penyebab kebutaan terbanyak kedua di dunia yang disebabkan oleh tekanan yang meninggi pada bola mata. Dalam proses mendiagnosa glaukoma, dibutuhkan waktu yang lama dikarenakan tidak ada perubahan secara signifikan pada citra fundus. Pada penelitian ini, penulis menggunakan Convolutional Neural Network (CNN) untuk mengekstraksi fitur dan metode klasifikasi Deep Belief Network (DBN) dalam mengklasifikasi glaukoma pada data citra fundus. Hasil pada model CNN-DBN dibandingkan dengan metode ekstraksi fitur CNN dan klasifikasi Support Vector Machine (SVM) yang dinamakan model CNN-SVM. Arsitektur CNN yang digunakan pada penelitian ini adalah ResNet-50. Dataset yang digunakan dalam penelitian ini diperoleh dari 2 online database, yaitu cvblab dan kroy1809. Pada proses ekstraksi fitur, model dilatih dari fully connected layer pada ResNet-50. Kemudian, vektor fitur dari fully connected layer diklasifikasi menggunakan metode klasifikasi DBN dan SVM. Berdasarkan hasil simulasi, CNN-DBN memiliki hasil akurasi, precision, dan recall terbaik dibandingkan dengan metode CNN-SVM dan CNN dengan akurasi 96.46%, precision 95.86%, dan recall 98.05% pada pembagian dataset training dan testing 70:30. ......Glaucoma is the second most common factor of blindness in the world caused by the increasing pressure on the eyeball. It takes a long time to diagnose glaucoma due no significant change in the fundus image. In this study, the author used the Convolutional Neural Network (CNN) to extract the features and the Deep Belief Network (DBN) classification method to classify glaucoma in fundus images. The results on the CNN-DBN model will be compared with to the CNN feature extaction method and the Support Vector Machine (SVM) classification method, named the CNN-SVM model. The CNN architecture used in this study is ResNet-50. The dataset used in this study are from 2 online database, cvblab and kroy1809. In the feature extraction process, the model is trained using the CNN method with the ResNet-50 architecture. Afterward, the feature vectors of the fully connected layer are classified using the DBN and SVM classification methods. Based on the simulation results, CNN-DBN has the best results than CNN-SVM and CNN method with the accuracy of 90%, precision of 95%, and recall of 92% with splitting data training and testing of 70:30.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Esti Merindasari
Abstrak :

Pengenalan emosi dasar melalui ekspresi wajah menjadi domain penelitian yang berkembang saat ini. Berbagai metode machine learning telah digunakan untuk permasalahan ini. Dewasa ini, metode deep learning terbukti lebih robust untuk penyelesaian domain pengenalan emosi dasar. Salah satu metode deep learning yang dapat digunakan adalah deep belief network-deep neural network (DBN). Metode ini sebelumnya berhasil diujikan untuk pengenalan citra CIFAR-10 dan MNIST, namun masih belum digunakan untuk dataset citra emosi wajah. Oleh karena itu, pada penelitian ini, kami menggunakan DBN-DNN untuk pengenalan emosi dasar. DBN-DNN diujikan dengan 2 (dua) skema eksperimen yakni DBN-DNN dimensi penuh dimensi tereduksi. Hasil dari kedua skema menunjukkan bahwa DBN-DNN berhasil diujikan pada dataset citra wajah MUG, CK+, dan IMED untuk pengenalan 7 (tujuh) kelas emosi dasar yaitu marah, jijik, takut, senang, netral, sedih, dan terkejut. Skema DBN- DNN dimensi penuh, berhasil mendapatkan akurasi pengenalan emosi dasar pada citra wajah dataset MUG sebesar 94.07%, dengan waktu komputasi yang cukup lama yakni 7 jam 13 menit. Berbeda halnya dengan pengenalan DBN- DNN dimensi penuh pada citra wajah dataset CK+ dan MUG, meskipun waktu yang dibutuhkan saat pengenalan cukup singkat yakni 11 menit untuk  CK+ dan 7 menit untuk IMED, akurasi yang didapatkan masih cukup kecil yakni 40.64% untuk CK+ dan 44.43% untuk IMED. Kecilnya akurasi pengenalan CK+ dan IMED, dipengaruhi oleh jumlah data yang kurang banyak, berbeda dengan MUG yang mencapai 9805 data. Sehingga, DBN-DNN kurang optimal dalam melakukan proses pembelajaran pada kedua dataset tersebut, CK+ dan IMED. Sedangkan, pada skema DBN-DNN dimensi tereduksi, akurasi berhasil meningkat baik untuk pengenalan pada dataset MUG, CK+ dan IMED. Akurasi pengenalan pada MUG mencapai 94.75%, CK+ 52.84%, dan IMED 56.58%. Waktu komputasi yang diperlukan dalam pengenalan pun juga lebih efisien khususnya pada dataset MUG, menjadi 3 jam 45 menit termasuk proses reduksi dimensi SVD di dalamnya. Hal ini berbeda untuk dua dataset lain, CK+ dan IMED, keduanya membutuhkan waktu cukup lama untuk proses reduksi dimensi karena SVD menggunakan jumlah dimensi 16384 untuk mendekomposisi matriks. Namun, jika waktu yang digunakan untuk proses DBN-DNN nya saja relatif lebih singkat dari DBN-DNN dimensi penuh, yakni 2 menit untuk CK+ dan 1 menit untuk IMED.

 


Facial emotion recognition using facial expression has been popular in these past years. There are many machine learning methods used for recognition tasks.  Currently, the most robust method for this domain is deep learning. One type of deep learning method that can be used is the deep belief network – deep neural network (DBN-DNN). Although DBN-DNN has been used for recognizing CIFAR-10 and MNIST datasets, it has not yet been used for facial emotion recognition. Hence, in this research, we attempt to use the DBN-DNN for recognizing facial emotions. This research consists of two experimental schemes, DBN-DNN with full dimension and DBN-DNN with the reduced dimension. The result of these experiments shows that using the MUG facial emotion dataset, DBN-DNN has successfully recognized 7 (seven) classes of basic emotions, angry, disgust, fear, happy, neutral, sadness, and surprise. DBN- DNN with full dimension has successfully reached 94.07% accuracy for recognizing 7 ( seven) basic emotions from the MUG dataset, even the run time needed is not efficient, 7 hours and 13 minutes. Meanwhile, the CK+ dan IMED dataset is not quite good at accuracy, even the run time is quite short, 11 minutes for CK+ dataset and 7 minutes for the IMED dataset. The accuracy for the CK+ dataset reaches 40,64% and 44.43% for the IMED dataset. This accuracy occurs because of the lack number of data that is processed by DBN-DNN. DBN-DNN is good at a lot of the number of data, like MUG with 9805 data. On the other hand, DBN-DNN with reduced dimension has successfully reached higher accuracy for MUG (94.75%), CK+ (52.84%) and IMED (56.58%) The run time also more efficient, especially on MUG Dataset (3 hours and 45 minutes). But, CK+ and IMED need a longer time for finishing the dimensionality reduction with SVD. Its because the number of dimensions processed by SVD uses a full dimension of the matrix, 16384. Hence, it needs more time to run the SVD. But, the time need for processing DBN-DNN after finishing the SVD, only need 2 minutes for CK+ dataset and 1 minute for IMED dataset.

 

T54428
UI - Tesis Membership  Universitas Indonesia Library
cover
Arie Rachmad Syulistyo
Abstrak :
Neural network attracts plenty of researchers lately. Substantial number of renowned universities have developed neural network for various both academically and industrially applications. Neural network shows considerable performance on various purposes. Nevertheless, for complex applications, neural network?s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of research-es had been undertaken on the improvement of the standard neural network. One of the most pro-mising modifications on standard neural network for complex applications is deep learning method. In this paper, we proposed the utilization of Particle Swarm Optimization (PSO) in Convolutional Neural Networks (CNNs), which is one of the basic methods in deep learning. The use of PSO on the training process aims to optimize the results of the solution vectors on CNN in order to improve the recog-nition accuracy. The data used in this research is handwritten digit from MNIST. The experiments exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the conventional CNN and DBN. The execution time was also almost similar to the conventional CNN. Therefore, the proposed method was a promising method.
Jaringan syaraf tiruan menarik banyak peneliti dewasa ini. Banyak universitas-universitas terkenal telah mengembangkan jaringan syaraf tiruan untuk berbagai aplikasi baik kademik maupun industri. Jaringan syaraf tiruan menunjukkan kinerja yang patut dipertimbangkan untuk berbagai tujuan. Meskipun begitu, kinerja dari jaringan syaraf tiruan merosot dengan signifikan untuk masalah-masa-lah yang kompleks. Untuk menyelesaikan masalah tersebut di atas, banyak penelitian yang dilakukan untuk meningkatkan kinerja dari jaringan syaraf tiruan standar. Salah satu pengembangan yang men-janjikan untuk jaringan syaraf tiruan pada kasus yang kompleks adalah metode deep learning. Pada penelitian ini, diusulkan penggunaan metode Particle Swarm Optimization (PSO) pada Convolutional Neural Networks (CNNs), yang merupakan salah satu metode dasar pada deep learning. Penggunaan PSO dalam proses pelatihan bertujuan untuk mengoptimalkan hasil vektor solusi pada CNN, sehingga dapat meningkatkan akurasi hasil pengenalan. Data yang digunakan dalam penelitian ini adalah data angka yang berasal dari MNIST. Dari percobaan yang dilakukan akurasi yang dicapai dengan 4 iterasi adalah 95,08%. Hasil ini lebih baik dari CNN konvensional dan DBN. Waktu eksekusinya juga men-dekati CNN konvensional. Oleh karena itu, metode yang usulkan adalah metode yang menjanjikan.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library