Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Syafi Muhammad Tauhid
"Pemanfaatan data untuk menghasilkan informasi yang dapat mendukung pengambilan keputusan bisnis semakin banyak diaplikasikan oleh berbagai perusahaan. Salah satu data yang dimanfaatkan dalam pengambilan keputusan tersebut adalah data pelanggan mengingat perannya dalam mengetahui perilaku pelanggan. Salah satu perusahaan yang memanfaatkan data pelanggan dalam pengambilan keputusan bisnis adalah English First (EF). Dalam membantu menetapkan strategi bisnis untuk meningkatkan perfoma penjualan, perusahaan menghadapi kendala penurunan performa penjualan perusahaan yang disebabkan oleh buruknya kualitas data pelanggan, sehingga strategi bisnis yang dihasilkan kurang tepat. Perusahaan berfokus kepada beberapa dimensi kualitas data pelanggan di perusahaan yaitu completeness, accuracy, dan consistency. Strategi untuk manajemen peningkatan kualitas data pada perusahaan perlu disusun guna penyusunan strategi bisnis yang tepat dan dapat meningkatkan performa penjualan. Penyusunan strategi manajemen peningkatan kualitas data dilakukan dengan melakukan penilaian terhadap dimensi-dimensi kualitas data untuk mengidentifikasi kondisi kualitas data saat ini di perusahaan EF. Selain itu, identifikasi kondisi manajemen dan praktek kualitas data di perusahaan saat ini juga dilakukan untuk dapat mengetahui kesenjangan antara kondisi perusahaan saat ini dengan kondisi yang diharapkan oleh perusahaan. Strategi peningkatan kualitas data yang dihasilkan dari analisis kesenjangan kondisi kualitas data dan manajemen & praktek kualitas data terdiri dari 8 (delapan) domain manajemen kualitas data. Delapan domain tersebut yaitu harapan dari kualitas data, penggunaan dimensi dari kualitas data, kebijakan data, prosedur, tata kelola data, standarisasi data, teknologi, dan pengelolaan kerja. Hasil dari strategi tersebut disusun menjadi rekomendasi solusi dan diurutkan berdasarkan prioritas dengan balance scorecard. Strategi yang memperoleh prioritas tinggi yaitu standardiasi aktifitas dan isu kualitas data serta mengidentifikasi ekspektasi dari kualitas data pada setiap dimensi kualitas data.

Data utilization to generate insights to support business decision making has been implemented in many companies. One of the most utilized data is customer data as it could provide information regarding customer’s behavior. One of the companies that utilize customer data is English First (EF). EF is a company in education sector and have more than 20 years of experience in Indonesia. EF utilize customer data in Customer Relationship Management system to produce a business strategy to boost company performance. However, since data in Customer Relationship Management system is stored by human, it has a low quality and resulted in a mismatch business strategy. Strategy to improve data quality management in the company needs to be produced in order to generate a precise business strategy and could boost company sales performance. Data quality assessment towards data quality dimensions needs to be done to produce a improve data quality management strategy. The assessment is needed to identify current data quality condition in EF. Other than that, identification of data quality management and practices in the company are needed to identify as-is management & practices in the company, company’s data quality expectation, and identify the gap between best practice & current condition. The result of data quality improvement strategy consists of 8 (eight) data quality management domains. Those domains are data quality expectation, data quality management, data quality, data policy, data procedure, data governance, data standardization, technology, and work management. The end result is a solution recommendation to improve data quality in EF and sorted by priority with the help of balance scorecard. The strategies that have high priority are company needs to standardized data quality activities and issues in the company as well as identify business expectation of each data quality dimension."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rahmad Mulyadi
"Target PT XYZ yang bergerak di industri keuangan untuk menjadi perusahaan terkemuka di Asia Tenggara telah didukung oleh lebih dari 200 juta data pelanggan yang ada di core system-nya. Data dengan jumlah yang sangat besar tersebut diharapkan dapat menciptakan peluang bisnis, membangun budaya sadar risiko dan menambah keunggulan dalam strategi bisnis PT XYZ. Hal tersebut dapat tercapai jika data yang digunakan adalah data yang berkualitas baik. Pada kenyataannya, ditemukan anomali pada sejumlah besar data pelanggan. Untuk dapat memberikan rekomendasi perbaikan kualitas data pelanggan, perlu dilakukan penilaian kualitas data pelanggan. Penilaian kualitas data pelanggan yang dilakukan pada penelitian ini menggunakan metode yang diperkenalkan oleh Loshin (2011). Loshin's Data Quality Management Model ini mengadopsi tingkat capability maturity model dalam penyusunan matriks karakteristiknya. Nilai kematangan yang diperoleh adalah 3,6 (expectation), 3,6 (dimension), 4,4 (policy), 3,8 (procedure), 4,2 (governance), 3,8 (standardization), 4,2 (technology), dan 3,8 (performance management). Dengan harapan senior management yang dapat mencapai level tertinggi pada kualitas data, dihasilkan 9 rekomendasi strategi. 9 rekomendasi strategi yang diajukan kepada PT XYZ merupakan hasil pemetaan antara kriteria yang belum terpenuhi dengan data quality management activity atau aktivitas DQM yang ada di Data Management Body of Knowledge (DMBOK) versi 2.0. Pengukuran dan pemantauan terhadap kualitas data yang baik menjadi rekomendasi yang paling berpengaruh untuk PT XYZ.

PT XYZ, engaged in the financial industry, has a target to become a leading company in Southeast Asia and has been supported by more than 200 million customer data in its core system. This huge amount of data is expected to create business opportunities, build a risk-aware culture, and increase supremacy in the business strategy of PT XYZ. These things can be achieved if the data used is of good quality data. In fact, found anomalies in a large number of customer data. To get recommendations for improving the quality of customer data, it is necessary to assess the quality of customer data. The assessment of the quality of customer data carried out in this study was by using the method introduced by Loshin (2011). Loshin’s Data Quality Management Model adopts a capability maturity level model in building its characteristic matrix. Maturity levels obtained are 3.6 (expectations), 3.6 (dimensions), 4.4 (policy), 3.8 (procedures), 4.2 (governance), 3.8 (standardization), 4, 2 (technology), and 3.8 (performance management). Regarding the expectation that senior management can achieve the highest level of data quality, 9 strategic recommendations were produced 9 strategy recommendations were submitted to PT XYZ is the result of mapping between criteria that have not been met with data quality management activity in Data Management Body of Knowledge (DMBOK) version 2.0. Measurement and monitoring of good data quality is the most influential recommendation for PT XYZ."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library