Ditemukan 3 dokumen yang sesuai dengan query
Basith Abi Ya'la
"Untuk memodelkan data cacah atau count data, model regresi yang biasa digunakan adalah model regresi Poisson. Model regresi Poisson mengasumsikan mean pada variabel respon sama dengan variansinya atau dikenal dengan istilah equidispersion. Apabila regresi Poisson digunakan untuk kondisi selain equidispersion, yaitu overdispersion dan underdispersion, maka nilai standard error dari estimasi parameter model menjadi tidak konsisten. Salah satu alternatif model regresi untuk mengatasi overdispersion maupun underdispersion adalah model regresi double Poisson. Model regresi double Poisson mengasumsikan variabel respon berdistribusi double Poisson. Distribusi double Poisson diperoleh menggunakan definisi dari keluarga distribusi double eksponensial. Parameter pada model regresi double Poisson diestimasi menggunakan metode maksimum likelihood dan solusi dari persamaan log-likelihoodnya diselesaikan menggunakan metode numerik Newton-Raphson. Penerapan model regresi double Poisson pada data kepiting tapal kuda menunjukan bahwa hanya variabel weight yang berpengaruh signifikan terhadap banyak kepiting satelit yang berkerumun ke sarang kepiting tapal kuda betina. Selain itu, interpretasi dari model regresi double Poisson juga serupa dengan model regresi Poisson sebab keduanya menggunakan fungsi penghubung log.
To model count data, the most commonly used regression model is the Poisson regression model. The Poisson regression model assumes that the mean of the response variable is equal to the variance, also known as equidispersion. If Poisson regression is used for conditions other than equidispersion, namely overdispersion and underdispersion, then the standard error value of the estimated model parameters becomes inconsistent. One of the alternative regression models to overcome overdispersion and underdispersion is the double Poisson regression model. The double Poisson regression model assumes that the response variable has a double Poisson distribution. The double Poisson distribution is obtained using the definition of the double exponential distribution family. The parameters in the double Poisson regression model were estimated using the maximum likelihood method and the solutions of the log-likelihood equation were solved using the Newton-Raphson numerical method. The application of the double Poisson regression model to the horseshoe crab data shows that only the variable weight has a significant effect on the number of satellite crabs swarming to the nests of female horseshoe crabs. In addition, the interpretation of the double Poisson regression model is also similar to the Poisson regression model because both use a log link function."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Fenny Hermawan
"Overdispersion adalah masalah yang sering ditemukan saat memodelkan data cacah. Overdispersion ditandai dengan nilai variansi lebih besar dari mean. Penyebab overdispersion yang sering terjadi adalah banyaknya pengamatan bernilai nol pada suatu data. Akibatnya, distribusi Poisson yang memiliki nilai mean dan variansi yang sama (equidispersion) tidak cocok lagi untuk memodelkan data cacah tersebut. Salah satu alternatif distribusi untuk mengatasi kondisi overdispersion adalah distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley hanya memiliki fungsi massa peluang monoton turun. Untuk menambah fleksibilitas distribusi Poisson-Lindley, distribusi tersebut diberikan bobot berupa fungsi bobot binomial negatif. Pemberian fungsi bobot binomial negatif ini tetap menghasilkan distribusi dengan nilai variansi lebih besar dari mean sehingga tetap dapat digunakan untuk mengatasi kondisi overdispersion. Distribusi baru yang diperoleh disebut distribusi weighted negative binomial Poisson-Lindley (WNBPL). Pada tugas akhir ini dibahas mengenai proses pembentukan distribusi weighted negative binomial Poisson-Lindley, beberapa karakteristiknya, dan pengestimasian parameternya dengan metode maksimum likelihood. Sebagai ilustrasi, digunakan data frekuensi klaim pemegang polis untuk dimodelkan dengan distribusi WNBPL.
Overdispersion is a common problem when modeling count data. Overdispersion is characterized by the variance greater than the mean. The cause of overdispersion that often occurs is the large number of zero-value observations in a data. As a result, the Poisson distribution which has the same mean and variance (equidispersion) is no longer suitable for modeling the count data. An alternative distribution to overcome the overdispersion condition is the Poisson-Lindley distribution. However, probability mass function of Poisson-Lindley is monotonic decreasing. To increase the flexibility of the Poisson-Lindley distribution, the distribution is given a weight function in the form of a negative binomial weight function. Giving this negative binomial weight function still creates a distribution with the variance greater than the mean to overcome overdispersion data. The new distribution obtained by giving that weight function is called the weighted negative binomial Poisson-Lindley (WNBPL) distribution. This thesis discusses the formation of the weighted negative binomial Poisson-Lindley distribution, some of its characteristics, and estimate its parameters using the maximum likelihood method. As an illustration, WNBPL distribution is used to model the data of frequency claims by policyholders."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhamad Ihsan
"Nilai hilang merupakan suatu masalah yang sering dijumpai di berbagai bidang dan harus diatasi untuk memperoleh inferensi statistik yang baik seperti penaksiran parameter. Nilai hilang dapat ditemukan pada setiap jenis data, salah satunya pada jenis data cacah/ count data yang berdistribusi Poisson. Solusi untuk mengatasi masalah nilai hilang berjenis data cacah tersebut dapat diatasi dengan menerapkan teknik imputasi ganda. Teknik imputasi ganda merupakan suatu cara mengatasi nilai hilang dengan mengganti setiap nilai yang hilang dengan beberapa nilai estimasi. Teknik imputasi ganda untuk kasus data cacah terdiri dari tiga tahap utama yaitu tahap imputasi berdasarkan model linier normal, tahap analisis dengan metode generalized linear model Poisson regression dan tahap penggabungan pooling parameter yang didasarkan pada aturan Rubin. Studi ini juga dilengkapi dengan simulasi numerik yang bertujuan untuk komparasi akurasi berdasarkan nilai bias yang dihasilkan. Parameter yang digunakan pada simulasi ini yaitu sebesar 5,10 dan 15 dengan jumlah sampel sebesar 200 untuk tujuan mengaproksimasi sifat kenormalan dan simulasi ini diulang untuk empat skenario yang bertingkat untuk setiap parameter berdasarkan besarnya persentase observasi nilai hilang (0%, 10%, 20% dan 30%). Berdasarkan studi literatur dan simulasi numerik yang dilakukan, solusi yang diajukan untuk mengatasi nilai hilang pada data cacah menghasilkan hasil yang cukup memuaskan terutama saat parameter bernilai besar dan persentase observasi nilai hilang yang kecil. Hal ini diindikasikan dengan ukuran bias dan variansi total dari taksiran rata-rata yang kecil. Namun nilai bias cenderung meningkat seiring meningkatnya persentase observasi nilai yang hilang dan saat nilai parameter yang kecil.
Missing values are a problem that is often encountered in various fields and must be addressed to obtain good statistical inference such as parameter estimation. Missing values can be found in any type of data, included count data that has Poisson distributed. One solution to overcome that problem is applying multiple imputation techniques. The multiple imputation technique is a way of dealing with missing values by replacing each missing value with some estimated values. The multiple imputation technique for the case of count data consists of three main stages, namely the imputation stage based on the normal linear model, the analysis stage using the generalized linear model Poisson regression and the last stage is pooling parameter based on Rubins rules. This study is also equipped with numerical simulations which aim to compare accuracy based on the resulting bias value. The parameters used in this simulation are 5, 10 and 15 with a sample size of 200 for the purpose of approximating normal properties and this simulation is repeated for four multilevel scenarios for each parameter based on the percentage of observation of missing values (0%, 10%, 20% and 30%). Based on the study of literature and numerical simulations carried out, the solutions proposed to overcome the missing values in the count data yield satisfactory results, especially when the parameters are large and the percentage of observation of the missing values is small. This is indicated by the size of the bias and the total variance of the small average estimate. But the bias value tends to increase with increasing percentage of observation of missing values and when the parameter values are small."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library