Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 116 dokumen yang sesuai dengan query
cover
Dewi Wulandari
"Mata merupakan salah satu indera terpenting bagi kehidupan manusia. Umumnya, banyak manusia yang mengabaikan gangguan fungsi penglihatan, dimana gangguan fungsi penglihatan ini mengindikasikan awal mula penyakit mata. Penyakit mata adalah gangguan fungsi penglihatan berkisar dari gangguan fungsi penglihatan ringan hingga gangguan fungsi penglihatan berat yang dapat menyebabkan kebutaan. Dalam melakukan diagnosa terhadap pasien gangguan fungsi penglihatan memiliki jenis penyakit mata yang diderita, diperlukan tahapan pemeriksaan retina dengan ophthalmoscopy atau fotografi fundus. Setelah itu, seorang dokter spesialis mata menganalisis jenis penyakit mata yang diderita pasien tersebut. Namun, karena terbatasnya sarana fasilitas kesehatan dan dokter spesialis mata yang memeriksa dan mengoperasi. Oleh karena itu, dibutuhkan alat deteksi dini dengan menggunakan data citra agar pasien gangguan penglihatan dapat ditangani sebelum pasien menderita gangguan fungsi penglihatan berat atau dapat mengalami kebutaan. Pada penelitian ini, diusulkan oleh peneliti model klasifikasi citra fundus ke dalam kelas normal, katarak, glaukoma, dan retina disease menggunakan Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data citra yang digunakan merupakan data fundus image retina yang berasal dari website kaggle. Sebelum data citra fundus image masuk ke dalam proses training model, dilakukan tahapan preprocessing pada data citra fundus image. Pada tahapan proses training dalam CNN digunakan fungsi optimasi untuk meminimalkan fungsi loss. Adapun fungsi optimasi yang digunakan dalam penelitian ini adalah Adam dan diffGrad. Hasil penelitian ini menunjukkan bahwa kedua fungsi optimasi tersebut memiliki hasil evaluasi training yang tidak jauh berbeda pada kedua fungsi optimasi. Keunggulan menggunakan kedua fungsi optimasi ini adalah mudah diterapkan. Pada penelitian ini didapatkan training loss terkecil sebesar 0,4838, validation loss terkecil sebesar 0,6658, dan training accuracy terbaik sebesar 0,8570 yang dimiliki oleh fungsi optimasi Adam. Sedangkan untuk validation accuracy terbaik sebesar 0,7189 yang dimiliki oleh fungsi optimasi diffGrad. Sedangkan running time tercepat pada proses training model sebesar 2840,9 detik yang dimiliki oleh fungsi optimasi diffGrad. Setelah tahapan proses training, dilakukan evaluasi dengan data testing. Secara keseluruhan, apabila dilihat dari hasil testing yang terbaik dimiliki oleh fungsi optimasi Adam dengan nilai accuracy sebesar 63%, recall sebesar 63%, dan precision sebesar 63%. Sedangkan running time tercepat pada proses testing model adalah 5,4 detik yang dimiliki oleh fungsi diffGrad. Dapat disimpulkan bahwa metode CNN menggunakan Arsitektur AlexNet dan fungsi optimasi Adam memberikan performa terbaik dalam mendeteksi penyakit mata pada data fundus image.

The eyes are one of the most important senses for human life. Generally, many people ignore visual impairment, where this visual impairment indicates the onset of eye disease. Eye disease is a visual impairment ranging from mild visual impairment to severe visual impairment which can lead to blindness. In diagnosing patients with visual impairment who have the type of eye disease they suffer, it is necessary to carry out a retinal examination with ophthalmoscopy or fundus photography. After that, an ophthalmologist analyzes the type of eye disease the patient is suffering from. However, due to limited medical facilities and ophthalmologists who examine and operate. Therefore, an early detection tool is needed using image data so that visually impaired patients can be treated before the patient suffers from severe visual impairment or can go blind. In this study, researchers proposed a model for classifying fundus images into normal, cataract, glaucoma, and retinal disease classes using Convolutional Neural Network (CNN) with AlexNet architecture. The image data used is retinal fundus image data from the Kaggle website. Before the fundus image data enters the training model process, a preprocessing stage is carried out on the fundus image data. At this stage of the training process in CNN, an optimization function is used to minimize the loss function. The optimization functions used in this study are Adam and differed. The results of this study indicate that the two optimization functions have training evaluation results that are not much different from the two optimization functions. The advantage of using these two optimization functions is that they are easy to implement. In this research, the smallest training loss is 0.4838, the smallest validation loss is 0.6658, and the best training accuracy is 0.8570 which is owned by the Adam optimization function. As for the best validation accuracy of 0.7189 which is owned by the diffGrad optimization function. Meanwhile, the fastest running time in the model training process is 2840.9 seconds, which is owned by the diffGrad optimization function. After the stages of the training process, evaluation is carried out with data testing. Overall, when viewed from the testing results, Adam's optimization function is the best with an accuracy value of 63%, recall of 63%, and precision of 63%. Meanwhile, the fastest running time in the model testing process is 5.4 seconds, which is owned by the diffGrad function. It can be concluded that the CNN method using AlexNet Architecture and Adam's optimization function provides the best performance in detecting eye diseases in fundus image data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Durrabida Zahras
"Untuk memenuhi tantangan dalam hal meningkatnya jenis penyakit di era modern ini, teknologi memainkan peran yang sangat penting dalam penelitian kesehatan. Kesehatan wanita telah menjadi perhatian utama karena meningkatnya angka kanker serviks yang  dapat menjadi penyakit mematikan. Dalam studi ini, kami akan menggunakan Deep Convolutional Neural Network untuk menemukan akurasi dalam mengklasifikasikan data kanker serviks pada empat jenis metode. Data kanker serviks diwakili oleh 32 faktor risiko dan empat variabel target: Hinselmann, Schiller, Cytology, dan Biopsy. Presentase akurasi metode Deep Convolutional Neural Network cukup baik jika dibandingkan dengan Neural Network dalam hal pengklasifikasian data faktor risiko kanker serviks, kita dapat melihat bahwa setiap data diklasifikasikan dengan benar dengan total akurasi mencapai hampir 90% untuk setiap target.

To meet the challenge of the increasing types of disease in this modern era, technology plays a very important role in health research. Womens health has become a major concern because of the increasing rates of cervical cancer because it can be a deadly disease. In this study, we will use deep Convolutional Neural Networks to find the accuracy in classifying cervical cancer data on four different types of methods. The cervical cancer data are represented by 32 risk factors and four target variables: Hinselmann, Schiller, Cytology, and Biopsy. The result with deep learning method is quite encouraging compare to the original neural network in classyfying cervical risk dataset, we can see that each data were correctly classified with the total accuracy reach almost 90% for each target."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aditiya Pratama
"Kendaraan roda dua atau yang biasa disebut sebagai motor merupakan kendaraan yang awam ditemukan khususnya di Negara Indonesia. Kendaraan yang sangat mudah untuk digunakan dan terjangkau harganya menjadikannya kendaraan nomor satu untuk digunakan sehari-hari. Banyak regulasi yang telah mengatur tentang keamanan dan kenyamanan untuk berkendara, namun masih banyak pihak yang melanggar hal tersebut. Oleh karena itu diperlukannya sebuah alat bantu yang dapat mendeteksi dan meregulasi pengendara sepeda motor. Menggunakan deep learning, komputer dapat mengelolah citra dengan tingkat akurasi yang tinggi dalam mendeteksi objek maupun klasifikasi objek. Salah satu metode Deep Learning yang digunakan untuk pengelolahan citra dan klasifikasi objek adalah YOLOv5 sebagai model utama. Tujuan dari Skripsi ini adalah untuk mengimplementasikan sistem detektor pengendara motor tanpa helm berbasi pengolahan citra dengan metode YOLOv5 dan melihat tingkat akurasi yang didapatkan. Hasil percobaan pada penelitian ini membuktikan bahwa sistem mampu melakukan deteksi dan kalkulasi dengan akurasi yang cukup tinggi yaitu sekitar 40 %. Hal ini sangat dipengaruhi dengan adanya jenis metode penentuan ID yang digunakan.

Two-wheeled vehicles or commonly referred to as motorbikes are vehicles that are commonly found, especially in Indonesia. A vehicle that is very easy to use and affordable, making it the number one vehicle for everyday use. Many regulations have regulated the safety and comfort of driving, but there are still many parties who violate this. Therefore we need a tool that can detect and regulate motorbike riders. Using deep learning, computers can manage images with a high degree of accuracy in detecting and classifying objects. One of the Deep Learning methods used for image processing and object classification is the YOLOv5. The purpose of this thesis is to implement an image processing-based helmetless motorcycle detector system using the YOLOv5 method and see the level of accuracy obtained. The experimental results in this study prove that the system is capable of performing detection and calculations with a fairly high accuracy of around 40%. This is strongly influenced by the type of ID determination method used."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadya Novalina
"COVID-19 adalah penyakit infeksi menular yang disebabkan oleh virus SARS-CoV-2 dan dapat menyebabkan gangguan pada sistem pernapasan. Pencitraan X-Ray dapat menjadi alternatif dalam mendeteksi COVID-19 karena mampu menggambarkan kondisi paru-paru pasien. Deep learning dapat digunakan untuk menganalisis pola pada citra medis secara otomatis. Untuk itu, digunakan Convolutional Neural Network dengan teknik transfer learning menggunakan arsitektur Xception, EfficientNetB3, dan ensemble dari kedua model secara paralel untuk deteksi COVID-19 dan tingkat keparahannya dari citra X-Ray dada secara otomatis. Klasifikasi COVID-19 dilakukan untuk empat jenis kelas, yaitu: positif COVID-19, normal, pneumonia bakteri dan pneumonia virus. Pada klasifikasi COVID-19, ketiga model classifier yang diusulkan mencapai akurasi keseluruhan untuk semua kelas sebesar 94,44% untuk classifier Xception, 95,28% untuk classifier EfficientNetB3, dan 94,44% untuk classifier paralel. Nilai akurasi tersebut lebih tinggi dari nilai akurasi classifier lain. Klasifikasi tingkat keparahan COVID-19 dilakukan untuk tiga jenis kelas yaitu: ringan, sedang, dan parah. Pada klasifikasi tingkat keparahan COVID-19, ketiga model classifier yang diusulkan mencapai akurasi keseluruhan untuk semua kelas sebesar 70,00% untuk classifier Xception, 67,50% untuk classifier EfficientNetB3 dan paralel. Nilai akurasi tersebut lebih tinggi dari nilai akurasi classifier lain. Secara keseluruhan, ketiga classifier yang diusulkan dapat direkomendasikan sebagai alat yang dapat membantu ahli radiologi dan praktisi klinis dalam diagnosis dan tindak lanjut kasus COVID-19.

COVID-19 is a contagious infectious disease caused by the SARS-CoV-2 virus and can cause disorders of the respiratory system. X-Ray imaging can be an alternative in detecting COVID-19 because it is able to describe the condition of the patient's lungs. Deep learning can be used to analyze patterns in medical images automatically. For this reason, Convolutional Neural Network is used with transfer learning techniques using Xception, EfficientNetB3 architecture, and an ensemble of both models in parallel for the detection of COVID-19 and its severity level from Chest X-Ray images automatically. The classification of COVID-19 is carried out for four types of classes, namely: positive COVID-19, normal, bacterial pneumonia, and viral pneumonia. In the COVID-19 classification, the three proposed classifier models achieve overall accuracy for all classes of 94.44% for the Xception classifier, 95.28% for the EfficientNetB3 classifier, and 94.44% for the parallel classifier. The accuracy value is higher than the other classifier accuracy values. The classification of the severity level of COVID-19 is carried out for three types of classes, namely: mild, moderate, and severe. In the classification of the severity level of COVID-19, the three proposed classifier models achieve overall accuracy for all classes of 70.00% for the Xception classifier, 67.50% for the EfficientNetB3 classifier and parallel. The accuracy value is higher than the other classifier accuracy values. Overall, the three proposed classifiers can be recommended as tools that can assist radiologists and clinical practitioners in the diagnosis and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amnia Salma
"Retinopati Diabetik (RD) merupakan salah satu penyakit yang dapat menyebabkan penurunan fungsi penglihatan pada mata, bahkan dapat menyebabkan kebutaan jika penanganan yang dilakukan tidak tepat. Upaya penanganan penyakit RD dapat dilakukan dengan deteksi dini. Melalui pendeteksian dini, pasien RD dapat diobati sesuai dengan tingkat keparahan yang diderita. Namun, pemeriksaan penyakit RD membutuhkan waktu yang lama dan hanya dapat dilakukan oleh profesional.
Para peneliti telah mengembangkan sistem deteksi pengklasifikasian penyakit RD yang dengan memanfaatkan perkembangan teknologi seperti penerapan Artifficial Intelligence (AI) pada gambar fundus. Dalam penelitian ini, peneliti mengaplikasikan Attention Mechanism (AM) pada Convolutional Neural Network (CNN) untuk selanjutnya menganalisis dan mengevaluasi hasil dari kinerja algoritma tersebut dalam mengklasifikasikan RD ke dalam level normal, mild, moderate, severe dan PDR. AM berfokus pada daerah yang berpenyakit dan CNN digunakan untuk proses klasifikasi. Arsitektur CNN yang digunakan adalah AlexNet dan GoogleNet. Phyton digunakan sebagai bahasa pemrograman dengan perpustakaan Pytorch. Hasil performa akurasi yang paling tinggi diperoleh oleh GoogleNet dan AM dengan capaian akurasi mencapai 85%. Performa model pada tiap-tiap kelas menunjukkan nilai akurasi terbaik pada kelas normal, severe, dan PDR dengan capaian nilai f-1 score masing-masing 86%, 90% dan 95%. Sementara untuk kedua kelas lainnya yaitu mild dan moderate cenderung lebih rendah, yaitu 73% dan 76%. Hal ini menunjukkan bahwa model mampu mengklasifikasikan kelas normal, Severe, dan PDR lebih baik daripada mild dan moderate.

Diabetic retinopathy (DR) is a disease that can cause decreased vision function in the eye, and can even lead to blindness. Efforts to treat DR disease can be done with early detection. Through early detection, DR patients can be treated according to their severity. However, DR disease examination takes a long time and can only be done by a professional.
Researchers have developed a detection system for classifying DR disease by technological developments such as the application of Artifficial Intelligence to fundus images. In this study, the researchers applied the Attention Mechanism (AM) to CNN to further analyze and evaluate the results of the algorithm's performance in classifying RD into normal, mild, moderate, severe and PDR levels. AM focused on pathological area in the fundus images and CNN is used as classifier. We used Architecture of CNN such AlexNet and GoogleNet. The results of the highest accuracy performance were obtained by GoogleNet and AM with the achievement of 85%. The performance of the model in each class shows the best accuracy values in the normal, severe, and PDR classes with the achievement of f-1 scores of 86%, 90% and 95%, respectively. Meanwhile, the other two classes, namely mild and moderate, tended to be lower, namely 73% and 76%. This shows that the model is able to classify normal, severe, and PDR classes better than mild and moderate.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Chelvian Aroef
"ABSTRAK
Pada era modern ini, semakin banyak jenis penyakit yang baru dengan gejala yang berbeda beda juga. Teknologi dituntut bisa memainkan peran untuk membantu penelitian pada bidang kesehatan. Stroke merupakan salah satu penyakit yang memiliki angka kematian tertinggi di dunia. Stroke terjadi karena terganggunya pasokan darah menuju otak sehingga otak mengalami kekurangan oksigen dan nutrisi. Stroke bisa dibagi menjadi berdasarkan bagaimana stroke terjadi, stroke hemoragik dan stroke iskemik. Stroke hemoragik terjadi karena pecahnya pembuluh darah yang menuju otak, sedangkan stroke iskemik terjadi karena terjadinya penyumbatan yang mengganggu pasokan darah ke otak. Jika penyumbatan terjadi pada daerah otak, maka disebut infark serebri. Dalam studi ini digunakan metode Convolutional Neural Network untuk mengklasifikasikan data gambar infark serebri yang nantinya akan dibandingkan dengan metode Neural Network. Didapatkan dari hasil performa metode Convolutional Neural Network lebih baik jika dibandingkan dengan metode Neural Network untuk pengklasifikasian data gambar infark serebri."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Maharani Dwi Yuan Syah
"ABSTRAK
Daerah perbatasan perairan Indonesia merupakan salah satu wilayah yang rentan akan kegiatan ilegal yang dapat merugikan negara. Oleh karena itu, perlu adanya pengawasan untuk setiap objek yang melewati perbatasan perairan tersebut. Pengawasan dapat dilakukan dengan pendeteksian jenis kapal yang melewati area perbatasan antar negara. Saat ini di Indonesia sudah terdapat pendeteksian khusus untuk mendeteksi adanya kapal perang asing. Selain kapal perang, kapal nelayan juga perlu dilakukan pengawasan untuk mencegah adanya illegal fishing. Pendeteksian kapal perang dan kapal nelayan dapat dilakukan dengan menggunakan mesin. Mesin dapat diprogram untuk menjalani perintah secara berulang kali, hal tersebut disebut sebagai Machine Learning, yang merupakan salah satu bidang dari Artificial Intelligence. Metode untuk memprogram pembelajaran mesin tersebut disebut dengan Deep Learning. Deep learning bekerja dengan membentuk hubungan antara neuron seperti layaknya cara kerja otak manusia atau biasa disebut dengan neural network.Salah satu jenis dari neural network yang terkenal adalah Convolutional Neural Network(CNN). CNN digunakan untuk simulasi pendeteksian kapal nelayan dan kapal militer dengan hasil keluaran berupa nilai akurasi training, akurasi validasi, dan juga prediksi. CNN juga ditambahkan additional layer, yaitu dropout dan batch normalization untuk meningkatkan ketepatan prediksi. Hasil yang didapatkan adalah pengaruh dari parameter layer dan dataset yang digunakan terhadap nilai akurasi pada pelatihan program. Dari simulasi didapatkan nilai akurasi yang paling baik dengan penggunaan pooling layer jenis max pooling dengan penggunaan layer tambahan berupa batch normalization dan dropout.

ABSTRACT
Indonesia's waters border is one of the areas that are vulnerable to illegal activities that can disserve the country. Detecting types of ships that cross border areas between countries is needed. Controlling can use machine thats automatically detect the object can do detection of warships and fishing boats. The concept is called machine learning. Machine learning is one of the types of Artificial Intelligence. The method for programming the machine learning is called Deep Learning. Deep learning works by forming relationships between neurons like the way the human brain works or commonly called a neural network. Convolutional Neural Network (CNN) is the famous method for deep learning. CNN is used to simulate the detection of fishing vessels and military vessels with the output in the form of training accuracy, validation accuracy, and the final prediction. CNN can also added an additional layer, namely dropout and batch normalization to improve the accuracy of predictions. The results obtained are the effect of the layer and dataset parameters used on the accuracy value in the training program. The best accuracy is obtained by using max pooling for pooling layer with additional layers of batch normalization and dropout."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Livia Ellen
"Dalam era digital ini, pembelajaran dengan metode e-learning menjadi solusi yang umum diimplementasikan pada pendidikan jarak jauh. Kekurangan dari metode e- learning ini yaitu minimnya informasi pengajar mengenai antusiasme dan tingkat partisipasi siswa dalam pembelajaran. Masalah tersebut dapat diselesaikan dengan sistem yang mampu mendeteksi engagement siswa. Tingkat engagement siswa pada e-learning dapat ditentukan dari pandangan siswa dan ekspresi wajah siswa dalam pembelajaran. Sistem pendeteksi engagement siswa bekerja dengan cara mendeteksi arah mata siswa dan ekspresi wajah siswa menggunakan teknologi OpenCV dengan metode CNN (convolutional neural network) pada input file berupa video atau webcam secara real-time. Sistem akan memberikan output berupa nilai engagement siswa “engaged” berdasarkan durasi mata siswa menatap layar dan ekspresi wajah siswa berupa ekspresi netral atau positif. Sistem akan memberikan output berupa nilai kehadiran siswa “disengaged” berdasarkan durasi mata siswa tidak menatap layar dan ekspresi wajah siswa menunjukkan ekspresi negatif. Sistem menganalisis reaksi emosi siswa yang direpresentasikan dalam parameter nilai persentase reaksi netral, positif, dan negatif menggunakan dataset FER-2013. Sistem pendeteksi engagement siswa dapat mengukur presensi, status attendance siswa memperhatikan layar, emosi, impresi dan status engagement siswa dengan tingkat akurasi sebesar 83,33%, presisi sebesar 100%, recall sebesar 66,67% dan f1 score sebesar 80,00%.

In this digital era, the e-learning method is a common solution implemented on distance learning. The disadvantage of the e-learning process is the facilitator has no idea about students' enthusiasm and participation rate during a lecture. This problem could be solved by a student engagement detection system. Student engagement can be determined by capturing the student's eye-gazing focus rate and student's facial expression during an online lecture. The student engagement detection system works by detecting student eye gaze and facial expression using OpenCV technology and CNN (convolutional neural network) method, receiving input through video file input or real-time webcam feed. The system will report on the student engagement level “engaged” if the student's eyes are staring at the screen and student facial expression showing a neutral or positive impression. The system will report on the student engagement level “disengaged” if the student's eye gaze were away from the screen and student facial expression showing a negative impression. This system will analyze student's emotional reactions which represented by neutral, positive, or negative reaction percentage value using the FER-2013 dataset. Student Engagement Detection System could calculate student presence, attendance rate calculated through eye gaze focus rate, emotional reaction, impression and engagement status with an accuracy of 83,33%, a precision of 100%, recall of 66,67%, and f1 score 80,00%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Nuraini
"Sistem klasifikasi citra lidah telah banyak digunakan dalam kepentingan medis dan diagnosis kesehatan. Penelitian ini berfokus pada peningkatan peforma akurasi klasifikasi pada sistem prediksi perokok berdasarkan analisis letak persebaran Smoker Melanosis pada citra lidah. Teknik diagonis lidah yang dibangun adalah metode yang non-invasif serta berbasis pencitraan hiperspektral (HSI). Berbagai pendekatan dan arsitektur Deep Learning  telah diusulkan untuk mengatasi analisis data HSI dan telah mencapai akurasi klasifikasi yang relatif tinggi. Pada penelitian ini, arisitektur Convolutional Neural Network (CNN) dipakai dalam konfigurasi spektral-spasial yang terutama digunakan dengan tujuan ekstraksi fitur dan klasifikasi. Peneliti membuat beberapa arsitektur CNN untuk melakukan beberapa pengujian. Peneliti mengklasifikasikannya sebagai Single CNN dan Hybrid CNN. Pada algoritma Single CNN ada 2 arsitektur yang dibuat  yaitu CNN-Autoencoder dan CNN-Alexnet. Pada algoritma Hybrid CNN ada 2 arsitektur yang dibuat yaitu Proposed Hybrid CNN dengan satu cabang dan Hybrid CNN Resnet18 dengan 8 cabang. Peneliti menguji dampak kernel pada setiap subjek segmentasi yang berbeda dan terlihat bahwa akurasi klasifikasi tertinggi setiap subjek bervariasi terhadap ukuran kernel. Oleh karena itu, model Hybrid-CNN ini diusulkan untuk dapat membuat arsitektur hibrida dan skala konvolusi hibrida. Pada model Proposed Hybrid CNN yang diusulkan, akurasi pada subjek Lateral A bisa mencapai 90,6%, Lateral B mencapai 86,5%, dan Persepsi Dokter mencapai 99,2%. Pada model Hybrid CNN-Resnet18 yang diusulkan, Lateral A bisa mencapai 89,4%, Lateral B mencaapai 84,6%, dan Persepsi Dokter mencapai 97,4%. Secara umum hasil akurasi model yang diusulkan berhasil mencapai peforma yang lebih baik.

The tongue image classification system has been widely used in medical interests and health diagnosis. This research emphasizes on improving the performance of classification accuracy in the Smoker prediction system based on the location analysis of the SmokerMelanosis distribution on the tongue image. The tongue diagonalization technique developed is a non-invasive method based on hyperspectral imaging (HSI). Various considerations and architecture In-depth learning have been proposed to overcome the analysis of HSI data and has obtained relatively high classification completion. In this study, the Convolutional Neural Network (CNN) architecture is used in the spectral-spatial configuration used for feature extraction and classification. CNN to do some testing. Researchers classified it as Single CNN and Hybrid CNN. In the Single CNN algorithm, there are 2 architectures created, namely CNN-Autoencoder and CNNAlexnet. In the Hybrid CNN algorithm, there are 2 architectures created, namely Proposed Hybrid CNN with one branch and Hybrid CNN Resnet18 with 8 branches. Learn more about the kernel in each different subject segmentation and look at the kernel classification. Therefore, the Hybrid-CNN model is proposed to be able to make hybrid architecture and hybrid convolution scale. In the approved Proposed Hybrid CNN model, approved on the subject of Lateral A can reach 90,60%, Lateral B reaches 86,5%, and Doctor Perception reaches 99,2%. In the CNN-Resnet18 Hybrid model obtained, Lateral A can reach 89,4%, Lateral B reaches 84,6%, and Doctor Perception reaches 97,4%. In general, the results of the completion of the approved model have achieved better performance. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>