Muhammad Aidan Daffa Junaidi
Abstrak :
Terumbu karang merupakan organisme laut yang memberikan keuntungan untuk banyak mahluk hidup lainnya. Semakin parahnya polusi pada air dan perubahan iklim yang tidak menentu menyebabkan kesehatan terumbu karang terancam. Proyeksi untuk tahun 2050 menunjukkan bahwa 95% terumbu karang kemungkinan akan mengalami pemutihan. Penelitian ini mengusulkan untuk menerapkan deep learning untuk mengklasifikasikan tipe dan level kesehatan terumbu karang yang klasifikasinya dibagi berdasarkan bagan kesehatan CoralWatch, yaitu dibagi menjadi level 1 – 6. Klasifikasi kesehatan terumbu karang pada penelitian ini dibagi menjadi 6 label, yaitu lv.6, lv.5, lv.4, lv.3, lv.2, dan lv.1. Sedangkan untuk klasifikasi tipe terumbu karang terdapat 3 kelas, yaitu Boulder, Table, dan Branching. Hasil akhir penelitian ini adalah model untuk klasifikasi tipe dan level kesehatan terumbu karang. Bahasa pemograman yang digunakan adalah python, dan arsitektur yang digunakan adalah ResNet, MobileNetV2, DenseNet, dan VGG19. Pada penelitian ini didapat akurasi terbaik sebesar 100% untuk klasifikasi tipe terumbu karang dengan arsitektur DenseNet dan untuk klasifikasi kesehatan terumbu karang didapat akurasi sebesar 55% dengan arsitektur DenseNet.
......Coral reefs are marine organisms that provide benefits to many other living creatures. The worsening pollution in the water and unpredictable climate changes threaten the health of coral reefs. Projections for 2050 indicate that 95% of coral reefs are likely to experience bleaching. This research proposes to apply deep learning to classify the types and health levels of coral reefs, with classifications divided based on the CoralWatch health chart, ranging from level 1 to 6. The health classification of coral reefs in this study is divided into 6 labels: lv.6, lv.5, lv.4, lv.3, lv.2, and lv.1. Meanwhile, for the classification of coral reef types, there are 3 classes: Boulder, Table, and Branching. The final outcome of this research is a model for classifying the types and health levels of coral reefs. The programming language used is Python, and the architectures used are ResNet, MobileNetV2, DenseNet, and VGG19. In this study, the best accuracy obtained for the classification of coral reef types is 100% with the DenseNet architecture, while for the classification of coral reef health, the accuracy obtained is 55% with the DenseNet architecture.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library