Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Djoko Hartono
Abstrak :
Skripsi ini betujuan untuk merancang sebuah software pendeteksi korona yang terjadi pada peralatan listrik yang mengunakan tegangan tinggi. Metode identifikasi menggunakan Hidden Markov Model (HMM) yang memiliki kelebihan dalam memodelkan persamaan matematika. Software ini meliputi 2 proses utama, yaitu training sebagai proses pengisian database dan identifikasi. Input berupa data audio (*.wav) yang kemudian diolah melalui beberapa tahapan diantaranya labelisasi, pembentukan codebook dan pembentukan parameter HMM. Hal yang harus diperhatikan dalam pengolahan ini adalah waktu pencuplikan, jumlah iterasi dan ukuran codebook yang digunakan, dimana ketiga variabel ini akan dianalis sehingga dapat diketahui nilai masing - masing parameter yang menghasilkan identifikasi dengan akurasi paling tinggi. Akurasi tertinggi yang dapat dicapai software ini hanya sebesar 50% dikarenakan data latih korona yang terbatas.
This final project was made to design a corona detection that occured in the electric equipment using very hight voltage, such as electric guardhouse. Identification methode that used was Hidden Markov Model (HMM). It had an advantage in modeling mathematic equations. This software contains 2 main proces, training as filling in the database and identification. The input is audio data which format is (*.wav) then processed pass through many steps, such as : labelisation, forming the codebook and HMM parameters. Factor that influenced to the accuration as the result of the software is duration time, amount of iteration and codebook size. With testing the software, we will know which setting will result the highest accuration. The maximal accuration of the identification is only 50% because of limited training data.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51159
UI - Skripsi Open  Universitas Indonesia Library
cover
Sepritahara
Abstrak :
Sistem pengenalan wajah manusia merupakan salah satu bidang yang cukup berkembang dewasa ini, dimana aplikasi dapat diterapkan dalam bidang keamanan (security system) seperti ijin akses masuk ruangan, pengawasan lokasi (surveillance), maupun pencarian identitas individu pada database kepolisian. Tujuan Penulisan laporan tugas akhir ini adalah untuk membangun sebuah perangkat lunak pengenalan citra wajah manusia menggunakan metode Hidden Markov Models (HMM) dengan input database Pain Ekspression Subset dan database Hasil Foto Sendiri dengan memanfaatkan aplikasi GUI. Hasil pengujian sistem menunjukkan bahwa sistem pengenalan wajah (face recognition) membandingkan percobaan pengenalan sesuai dengan codebook (32, 64,128, 256) dan iterasi (5, 10). Sistem pengenalan wajah manusia menggunakan metode Hidden Markov Models (HMM) mencapai tingkat akurasi pengenalan sebesar 84,28%, dengan database 70 gambar yang terdiri dari 10 individu dengan masing-masing individu memiliki 7 variasi ekspresi yang berbeda.
ABSTRACT
Human face recognition system is one area that is developing now, where applications can be applied in the field of security (security system) such as permit access into the room, monitoring locations (surveillance), or search for individual identity in the police database. Purpose of this final report is to build a software image of human face recognition using Hidden Markov Models method (HMM) with input Pain Ekspression Subset database and Image itself database applications of GUI. Test results show that the system of face recognition systems trial comparing the introduction according to the codebook (32, 64.128, 256) and iteration (5, 10). Human face recognition system using Hidden Markov Models (HMM) reached the level of recognition accuracy of 84,28%, with 70 database that consists of 10 individuals with each individual has 7 variations of expressions.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1373
UI - Skripsi Open  Universitas Indonesia Library
cover
Wachid Nafian
Abstrak :
Pada Skripsi ini membahas tentang proses konversi ucapan menjadi tulisan, Speech-to-Text yang merupakan salah satu aplikasi dari speech recognition. Tujuan dari skripsi ini yaitu bagaimana sistem dapat mengenali sedikitnya 30 kata baik kata dasar walaupun kata jadi yang diucapkan oleh seseorang tertentu (speaker dependent) dan melihat performansi (unjuk kerja) dari sistem dengan parameter codebook dan jumlah framing yang berbeda-beda. Simulasi dibuat dengan menggunakan program Matlab 6.5 dan metode yang digunakan yaitu Hidden Markov Model (HMM). Metode HMM ini telah banyak diapliksikan dalam teknologi speech recognition. Cara yang digunakan dalam simulasi ini yaitu mengenali kata melalui pengenalan terhadap unit katanya yaitu suku kata. Suku kata yang dijadikan sebagai sumber database sebanyak 25 buah, dan dengan menggunakan variabel ukuran codebook dan jumlah training yang berbeda-beda untuk dilihat performansi mana yang memberikan hasil pengenalan terbaik. Dari hasil percobaan dengan simulai ternyata dengan ukuran codebook dan jumlah training yang lebih besar untuk jumlah label 25 memberikan performansi yang lebih baik dan dapat memberikan perbaikan dari kondisi sebelumnya, dalam hal ini memberikan perbaikan dari keberhasilan 8,36 % pada codebook 32 dan training 5 menjadi 81,09 % dengan menggunkan codebook 1024 dan jumlah training 40. Kata-kata yang berhasil dikenali dengan variasi dari 25 suku kata sedikitnya ada 50 kata.
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39311
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sijabat, Davit Wasty
Abstrak :
Dalam proses pengarsipan musik dijital, dilakukan penyimpanan sejumlah informasi nada yang terkandung di dalamnya, contohnya chord. Chord merupakan salah satu atribut penting dalam musik yang nantinya akan mempengaruhi harmoni dan melodi suatu musik. Oleh karena itu, dalam menganalisis keseluruhan struktur harmoni dari sebuah bagian musik sering dimulai dengan melabelkan setiap chord pada bagian musik tersebut. Skripsi ini mensimulasikan pengenalan chord terisolasi dengan metode HMM. Prosesnya meliputi pelatihan dan pengenalan. Tahap pelatihan antara lain melabelkan chord, membuat codebook, dan memodelkan HMM. Proses pengenalan chord mengacu pada nilai yang mendekati probabilitas database yang telah dibuat. Berdasarkan hasil variasi beberapa bobot codebook dan repetisi, maka akurasi sistem paling optimal bernilai 98,33%, yaitu kombinasi bobot codebook 128 dan repetisi 20.
Setting databases of digital music - there are much information of tones saved, for example chords. Chord is one of the most important part of music that build the harmonic structure and its melody. Hence, analyzing the overall harmonic structure of musical piece often starts with labelling every chord at the part of music being analyzed. This minithesis had simulated isolated chord recognition with HMM method. There are two main processes : training and recognition. Training consists of labelling every chord, making codebook, and modelling HMM parameters. The recognition value reference on the probability value that approach database had been made. Based on the simulation with variation combined both codebook and repetion, thus the optimum value of this system is 98,33% that both combination codebook 128 and repetion 20.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51457
UI - Skripsi Open  Universitas Indonesia Library
cover
Putri Astianingrum
Abstrak :
Berdasarkan informasi dari WHO tahun 2008, bahwa di negeri China telah terjadi pencampuran melamin dalam bahan makanan yang mengandung susu seperti susu, biskuit, yogurt dan bahan makanan lainnya. Campuran melamin pada makanan dan minuman dapat mengakibatkan penyakit gagal ginjal, kanker bahkan kematian. Pencampuran melamin sebagai bahan pembuatan makanan dan minuman ditujukan untuk mengelabuhi badan pengecekan kualitas pangan, karena pada melamin terdapat kadar nitrogen 66% yang membuat bahan makanan dan minuman akan terlihat memiliki kandungan protein yang tinggi sehingga bahan makanan dan minuman tersebut dapat dikategorikan normal dan sesuai standar badan pengecekan kualitas pangan. Skripsi ini membahas tentang analisa dan identifikasi kadar melamin pada berbagai bahan makanan dan minuman yang mengandung susu dengan metode Hidden Markov Model (HMM). Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan identifikasi kadar melamin. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu setiap sampel data larutan akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter Hidden Markov Model (HMM). Hanya saja, pengolahan sinyal data pada proses identifikasi mengacu pada database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektor-vektor data dengan proses ektraksi, yang kemudian dicari suatu nilai centroid yang presisi dengan teknik Vector Quantization (VQ) dan kemudian diproses kedalam Hidden Markov Model (HMM) untuk menentukan nilai-nilai parameter yang dibutuhkan. Berdasarkan parameterparameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi jumlah data training dan ukuran codebook. Pada perancangan sistem ini, jumlah database yang optimal dengan menggunakan jumlah data training sebanyak 7 (tujuh) buah dan untuk ukuran codebook yang optimal adalah 128. Sementara akurasi sistem secara keseluruhan bervariasi antara 60% hingga 85%.
Based on information from WHO in 2008, many food industry in china added some melamine in milk, biscuit, yogurt, and other food. This can be very harmful because melamine in food can cause many disease for example kidney abortive function, cancer which can lead to the death. The purpose of adding melamine in the food is for cheating government food quality department, because the nitrogen content in melamine is 66%, so the food and drink will be seen contains high protein and categorize a normal food and can pass food quality check. This final project will dwell on analyze and identification of melamine content in foods using Hidden Markov Model (HMM). The system divide in two process, the making of data base and introducing of melamine content in foods or drink. This both process will be done in almost the same way, that is labialization process of each data, codebook making process, and Hidden Markov Model (HMM) parameter making process. The difference is data signal processing in introducing process will refer to database previously made. Its all start with the making of vectors using quantization vector technique (VQ) which will be use for determine the precision centroid value use for Hidden Markov Model (HMM) state for determine the needed parameters value. Based on this parameters, the maximum probability (Log of Probability) can be count and will show the output of percentage melamine content. From this layout system, system accuracy will be compare with the amount of data training variation and codebook size. At this layout system, the amount of optimum database will be get by using 7 (seven) data training and the optimum codebook size is 128. Meanwhile, the overall accuracy of the system will be variate from 65% up to 85%.
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51314
UI - Skripsi Open  Universitas Indonesia Library
cover
Reny Anggraeny
Abstrak :
Tingkat kesejahteraan suatu negara dapat dilihat dari angka kematian bayi. Berdasarkan informasi dari WHO salah satu penyebab kematian bayi adalah asfiksia. Asfiksia merupakan kondisi kekurangan oksigen pada jaringan tubuh. Skripsi ini membahas tentang sistem identifikasi kondisi janin dengan menggunakan metode Hidden Markov Model (HMM). Data audio merupakan masukan pada sistem. Data audio ini merupakan hasil konversi gelombang spektrum yang berasal sensor Near Infrared Spectroscopy (NIRS). Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan kondisi janin. Kedua proses ini dilakukan dengan cara yang hampir sama yaitu pelabelan, pembentukan codebook, dan pembentukan parameter HMM. Dari parameter ini, hasil keluaran dapat diketahui dengan menghitung nilai probabilitas maksimum. Pada penelitian ini, digunakan data training sebanyak 5 dan 7 data dengan ukuran codebook 32, 64, 128, 256, 512, dan 1024. Dari hasil pengukuran, ukuran codebook yang optimal adalah 512. Sementara persentase akurasi bernilai 68% sampai 77%. ......The level of walfare of a country can be seen from its infant mortality rate. Based on WHO information, one of the causes of infant mortality is asphyxia. Asphyxia is the condition of lack of oxygen in body tissue. This final project discusses about identification system of fetal asphyxia condition by using Hidden Markov Model (HMM) method. Audio data is the input of the system. This audio data is the result of conversion of spectrum wave originated from Near Infrared Spectroscopy (NIRS) sensor. This system consists of two main prosesses: database construction and fetal condition recognition. These two processes are carried out with similar ways through labellling, codebook forming, and HMM parameter forming. From the parameter, the output can be detected by calculating the maximum value of Log of Probability. This research uses 5 and 7 training data with codebook size 32, 64, 128, 256, 512, dan 1024. From the calculation result, the optimum codebook size is 512. While the percentage of accuracy is 68% to 77%.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43342
UI - Skripsi Open  Universitas Indonesia Library
cover
Afita Putri Lestari
Abstrak :
Darah merupakan unsur dalam tubuh manusia yang memiliki peran penting dalam mekanisme kerja tubuh. Banyak informasi penting yang terkandung dalam darah, termasuk informasi penyakit yang diderita seseorang. Pentingnya informasi tersebut ditambah kebutuhan diagnosis dini untuk mempercepat penanganan suatu penyakit, maka citra darah sangat vital sebagai media dalam proses pengenalan penyakit. Dengan menggunakan citra darah, proses pengenalan penyakit menjadi lebih mudah dan cepat karena tidak diperlukan proses reaksi kimia dengan darah. Dalam skripsi ini dilakukan perancangan proses pengenalan penyakit leukemia dari citra darah dengan menggunakan metode Hidden Markov Model (HMM). Prosesnya melibatkan dua tahap proses utama yaitu proses pembentukan database dan proses pengenalan. Pada tahap pembentukan database, citra darah diubah menjadi vector sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan berupa codebook di dalam database. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan titik sample dari setiap sample citra darah. Dengan menggunakan codebook berukuran 32, 64 dan 128 dengan jumlah repetisi 5 dan 10 kali, diperoleh tingkat akurasi pengenalan penyakit darah antara 60% sampai 82,76%.
Blood is a part of human body which plays an important role in the body mechanism. Important informations could be achieved from blood, including information of diseases. This kind of information is very essential in order to diagnose the disease as early as possible. Blood cells in digital format will be easier to analyze using computers and the process itself could be performed faster than conventional methods, since it needs no chemical reactions in the process. In this research, the disease identification for leukemia is performed from blood imageries analyzed using Hidden Markov Model (HMM). The whole process consists of two main processes: database construction and recognition. In the first process, blood image will be transformed to vectors as sample points and the nearest points will be quantized as centroids or codewords. The collection of codewords is built in codebook database. Recognition process is performed by taking the largest value of HMM?s log of probability from sample points of several blood images. Based on the simulation results, using codebook 32, 64 and 128 with repetition 5 and 10 times, the accuration levels of the recognition results are between 60% and 82.76%.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40544
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Rizky Hartaman
Abstrak :
Sampai saat ini, serangan jantung masih menjadi penyebab utama kematian dibanyak tempat di dunia. Salah satunya adalah kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini membahas tentang perancangan sistem pengenalan penyakit jantung berdasarkan suara detak jantung dengan metode HMM. Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan penyakit jantung. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu tiap sampel akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter HMM. Hanya saja, pengolahan sinyal suara pada proses pengenalan mengacu database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektorvektor data dengan teknik kuantisasi vektor (VQ), yang kemudian dicari suatu nilai centroid yang presisi untuk dijadikan state HMM dalam menentukan nilainilai parameter yang dibutuhkan. Berdasarkan parameter-parameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi nilai durasi sampel, jumlah sampel, dan ukuran codebook. Pada penelitian ini ukuran codebook yang optimal adalah 64, jumlah database yang optimal sebesar 10 (sepuluh) buah, dan rentang waktu sampel yang optimal adalah 0,7 detik. Sementara akurasi sistem secara keseluruhan bervariasi antara 60% hingga 85%.
Heart attack is still being the number one killer until now all over the world. A part of heart diseases which can be detected by murmur sound and will be explained here is valve anomaly. This thesis is talking about heart disease recognition based on its heart sound system design using HMM method. The system consists of two main processes: database construction and diseases recognition. Both of this processes is done with almost exact ways. Each samples will be processed through labelling, codebook construction, and HMM parameter making. The difference is that in recognizing process, sound signal will be compared to database which has been made before. The whole process is started with data vectors production by vector quantization (VQ) which can be used to analyze precise centroid positions. The centroid will define HMM states and parameters. A Log of Probability (LoP) will be calculated from the parameter values. The largest value of LoP will be declared as an output of the system. Output of each samples are compared to get system accuracy based on variation of sample duration, sample amount, and codebook size. The optimum codebook size in this research is 64, optimum sample amount in database is 10, and 0.7s sample duration. Overall, accuracy of the system is variating from 60% up to 85%.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51389
UI - Skripsi Open  Universitas Indonesia Library
cover
Evi Andriani
Abstrak :
Hidup di kota yang memiliki tingkat populasi dan polusi yang sangat tinggi akan berdampak negatif bagi kesehatan manusia, khususnya pada sistem pernafasan. Gangguan pada sistem pernafasan biasanya dapat terdeteksi melalui suara tarikan dan hembusan nafas dari penderita. Beberapa contoh gangguan tersebut adalah bronchial, cracle dan pleurisy. Skripsi ini membahas tentang perancangan sistem identifikasi penyakit pernafasan atau paru-paru dengan metode Hidden Markov Model (HMM). Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan penyakit paru-paru. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu tiap sampel akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter HMM. Hanya saja, pengolahan sinyal suara pada proses pengenalan mengacu database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektorvektor data dengan teknik kuantisasi vektor (VQ), yang kemudian dicari suatu nilai centroid yang presisi untuk dijadikan state HMM dalam menentukan nilainilai parameter yang dibutuhkan. Berdasarkan parameter-parameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi nilai durasi sampel, jumlah sampel, dan ukuran codebook. Pada penelitian ini, ukuran codebook yang optimal adalah 32, jumlah database yang optimal sebesar 10 (sepuluh) buah. Sementara persentase akurasi sistem secara keseluruhan bervariasi antara 70% hingga 93,33%.
Living in high poluted and populated city will give negative effects for our health especially for our respiratory system. The failure of respiratory system can be recognized by its sound during inhale and exhale phases called abnormal sound. It consist of bronchial, cracle, and pleural. This thesis discusses about lung disease recognition based on its abnormal sound using HMM method. The system consists of two main processes: database construction and diseases recognition. Both of this processes is done with almost exact ways. Each sample is processed through labelling, codebook construction, and HMM parameter construction. The difference is that in recognizing process, sound signal will be compared to database which has been made in prior. The whole process is started with data vectors production by using vector quantization (VQ) which can be used to analyze precisely centroid positions. The centroid will define HMM states and parameters. A Log of Probability (LoP) will be calculated from the parameter values. The largest value of LoP will be declared as an output of the system. Output of each samples are compared to obtain system accuracy based on variation of sample duration, sample amount, and codebook size. The optimum codebook size in this research is 32 and optimum sample amount in database is 10. Overall, accuracy of the system is variating from 70% up to 93,33%.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51125
UI - Skripsi Open  Universitas Indonesia Library
cover
Dona Andika Sukma
Abstrak :
Skripsi ini berisi tentang pengidentifikasian biometrik melalui pola pembuluh darah telapak tangan dengan menggunakan metode Hidden Markov Model (HMM), dengan membandingkan keseluruhan sistem terhadap perubahan ukuran codebook dan jumlah iterasi. Metode HMM secara garis besar terdiri dari dua tahapan proses, yakni proses training database, dan proses identifikasi. Pada sistem pengidentifikasian ini, gambar pembuluh darah telapak tangan yang digunakan adalah gambar dari database CASIA-MS-PalmprintV1 yang dikumpulkan oleh Chinese Academy of Sciences Institute of Automation (CASIA). Gambar tersebut terlebih dahulu diolah dengan menentukan ROI. ROI yang sudah didapatkan kemudian diekstraksi dengan melakukan penambahan kontras, pengubahan gambar ke biner dan melakukan thinning terhadap garis-garis yang ada pada gambar sehingga pola pembuluh darah terlihat jelas.
This thesis contains a biometric identification through palm vein patterns using Hidden Markov Models (HMM), by comparing the overall system to changes in the size of the codebook and the number of iterations. HMM method mainly consists of two stages of the process, first one is database training process, and the identification process. This identification system is using palm vein images from Casia-MS-PalmprintV1 database that collected by the Chinese Academy of Sciences Institute of Automation (Casia). First, images are processed by determining the ROI. ROI then extracted by adding contrast, convert to binary image and do the thinning of the lines in the image so that the pattern of vein clearly visible.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1715
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2   >>