Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 72 dokumen yang sesuai dengan query
cover
Evan Eka Wijaya
Abstrak :
Klasifikasi genre musik merupakan salah satu bidang dari Music Information Retrieval (MIR) yang menggunakan pola-pola spektral dalam rekaman audio digital sebagai fitur untuk membentuk sebuah sistem yang dapat menentukan genre dari sebuah musik secara otomatis. Beberapa model deep learning telah dikembangkan untuk memperoleh performa terbaik dalam melakukan klasifikasi genre musik. Tiga di antaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan model hybrid CNN-LSTM. Walaupun model- model tersebut mampu memberikan hasil yang cukup memuaskan, model-model tersebut memiliki kekurangan masing-masing. Model CNN kurang dapat memperhitungkan urutan-urutan fitur pada data berurutan dan model LSTM tidak dapat melakukan komputasi secara paralel. Ketiga model tersebut juga membutuhkan pengulangan dan konvolusi yang kompleks, serta waktu yang cukup panjang untuk perhitungan berurutan. Transformers merupakan arsitektur model yang tidak lagi mengandalkan recurrence/pengulangan, melainkan mekanisme attention yang dapat memperhitungkan urutan-urutan data pada data berurutan dan melakukan perhitungan paralel sehingga jangka waktu yang dibutuhkan dalam perhitungan lebih singkat. Melihat keberhasilan dan kepopuleran dari Transformer pada berbagai bidang seperti Bidirectional Encoder Representations from Transformers (BERT) pada bidang Natural Language Processing dan Vision Transformers pada bidang Computer Vision, pada skripsi ini dilakukan analisis mengenai kinerja model Transformers dalam permasalahan klasifikasi genre musik dibandingkan dengan model CNN, LSTM, dan CNN-LSTM. ......Music genre classification is one of the fields of Music Information Retrieval (MIR) that uses spectral patterns in digital audio recording as features to build a system that can automatically classify a music’s genre. Several deep learning models have been developed to get the best performance in classifying music genres. Three of them are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and hybrid CNN-LSTM model. Although those models can give satisfactory results, each model has their own weakness. CNN is less able to consider the sequences in sequential data and LSTM is not able to do parallel computation. All these models also require complex recurrences and convolutions, as well as quite a long time for sequential calculations. Transformers is a model architecture that no longer relies on recurrences, but rather on an attention mechanism that can consider the sequences in data and perform parallel calculations so that the time required for calculation is shorter. Looking into the success and popularity of Transformers in various fields such as BERT in the field of NLP and Vision Transformers in the field of Computer Vision, this thesis analyzes the performance of Transformers on music genre classification compared to CNN, LSTM, and CNN-LSTM.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bryan Indarto Giovanni Firjatulloh
Abstrak :
Kondisi pasca bencana adalah sebuah kondisi darurat yang membutuhkan pertolongan pertama dari tim penyelamat. Oleh karena itu, dikembangkan pemanfaatan radar yang digunakan untuk mendeteksi manusia dalam kondisi pasca-bencana. Sayangnya, banyaknya parameter yang mempengaruhi pengklasifikasian membatasi pemakaian radar 24 GHz seperti reruntuhan yang menutupi manusia. Oleh karena itu, radar dengan frekuensi yang lebih tinggi dimanfaatkan dengan frekuensi 77 GHz yaitu sinyal milimeter. Metode seperti deep learning dan backpropagation neural network sudah diterapkan pada penelitian-penelitian sebelumnya menggunakan radar sinyal milimeter. Namun, tingkat akurasi dari klasifikasi kelas dari makhluk hidup hanya mencapai 49% dengan jumlah klasifikasi 2 kelas dan 32% dengan jumlah klasifikasi 3 kelas. Oleh karena itu, dikembangkan kembali dengan metode Convolutional Neural Network. Akurasi yang didapatkan meningkat hingga mencapai 99% untuk klasifikasi 2 kelas dan 3 kelas. Namun akurasinya menurun untuk klasifikasi kelas yang lebih banyak hingga 68%. Skripsi ini mengajukan metode 3D-Convolutional Neural Network guna meningkatkan resolusi dari data yang diberikan dalam pelatihan dari model untuk meningkatkan akurasi pada klasifikasi kelas dengan model yang diajukan. ......The post-disaster condition is an emergency that requires immediate first aid from rescue teams. Therefore, the use of radar has been developed to detect humans in post-disaster conditions. Unfortunately, the numerous parameters affecting classification, such as rubble covering humans, limit the use of 24 GHz radar. Consequently, higher frequency radar, specifically 77 GHz millimeter-wave signals, is utilized. Methods like deep learning and backpropagation neural networks have been applied in previous studies using millimeter-wave radar signals. However, the classification accuracy for living beings reached only 49% for two-class classification and 32% for three-class classification. Therefore, the method was further developed using Convolutional Neural Networks (CNN). The accuracy achieved improved to 99% for both two-class and three-class classifications, but it decreased to 68% for classifications with more classes. This thesis proposes the use of a 3D-Convolutional Neural Network method to enhance the resolution of the data used in model training, aiming to improve the accuracy of class classification with the proposed model.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lucy Kung-Shankleman
Jakarta: Radio 68H, 2003
070.92 LUC i
Buku Teks  Universitas Indonesia Library
cover
Hartina Hiromi Satyanegara
Abstrak :
Serangan MitM ini memiliki dampak yang cukup besar dan dapat membuka jalan untuk serangan selanjutnya, seperti Phishing. Penelitian ini membahas tentang pendekatan metode hybrid deep learning yang dapat membantu pendeteksian serangan MitM secara efektif. Metode hybrid deep learning yang digunakan dalam penelitian ini adalah CNN-MLP dan CNN-LSTM, yaitu merupakan gabungan dari CNN, MLP, dan LSTM. Selain itu, dalam skenario eksperimennya menggunakan berbagai metode feature scaling (StandardScaler, MinMaxScaler, dan MaxAbsScaler) dan tanpa menggunakan metode feature scaling sebelum melakukan pemodelan, yang kemudian akan ditentukan metode hybrid deep learning yang terbaik untuk mendeteksi serangan MitM dengan baik. Dataset yang digunakan dalam penelitian ini yaitu Kitsune Network Attack Dataset (ARP MitM Ettercap). Hasil dari penelitian ini yaitu metode CNN-MLP dengan 10 epoch menggunakan MaxAbsScaler memiliki nilai accuracy tertinggi, yaitu 99.93%. Pada urutan kedua, CNN-MLP dengan 10 epoch menggunakan StandardScaler memiliki nilai accuracy sebesar 99.89%. ......Man in the Middle (MitM) has a sizeable impact because it could make the attackers will do another attacks, such as Phishing. This research is discussing about hybrid deep learning methods-approach on detecting MitM attacks effectively. We were used 2 (two) combinations of the Deep Learning methods (CNN, MLP, and LSTM), which are CNN-MLP and CNN-LSTM. Besides that, in the experiment scenarios, we also used various Feature Scaling methods (StandardScaler, MinMaxScaler, and MaxAbsScaler) and without using any Feature Scaling methods before building the models and will determine the better hybrid Deep Learning methods for detecting MitM attack. Kitsune Network Attack Dataset (ARP MitM Ettercap) is the dataset used in this study. The results of this research proves that CNN-MLP that with 10 epoch using MaxAbsScaler has the highest accuracy rate of 99.93%. In second place, CNN-MLP with 10 epoch using StandardScaler has the accuracy rate of 99.89%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jihand Aulia Sashiomarda
Abstrak :
ABSTRAK
Petir merupakan fenomena alam yang bersifat desruktif yang dapat membahayakan kehidupan makhluk hidup. Data pemetaan petir sangat dibutuhkan oleh perusahaan asuransi untuk membuktikan bahwa lokasi tersebut tersambar petir. Data pemetaan petir tersebut diperoleh dari Badan Meteorologi Klimatologi dan Geofisika (BMKG) dari perangkat Lightning Detector yang terbatas dan relatif mahal harganya. Oleh karena itu penelitian ini bertujuan untuk membuat sebuah sistem yang dapat mendeteksi lokasi petir dengan bermodalkan smartphone android dengan metode trilateration. Prinsip kerja sistem ini dimulai dari perangkat android yang merekam gelombang elektromagnetik dan suara guntur yang dihasilkan petir. Sistem pengenalan suara petir berbasis Convolutional Neural Network (CNN) digunakan dalam sistem yang dibangun. Selanjutnya data lokasi (lintang dan bujur) dari Global Positioning System (GPS) akan dikirim ke server untuk dihitung sehingga mendapatkan nilai jarak antara dari lokasi petir dan lokasi perangkat android. Beberapa perangkat android (minimal tiga perangkat) akan menghasilkan titik perpotongan dengan metode trilateration. Titik perpotongan tersebut dapat diasumsikan lokasi petir.
ABSTRACT
Lightning is a destructive natural phenomenon in nature that can endanger the lives. Lightning mapping data is needed by insurance companies to prove that the location was struck by lightning. The lightning mapping data was obtained from the Meteorology, Climatology and Geophysics Agency (BMKG) from the Lightning Detector device which was limited and relatively expensive. Therefore, this study aims to create a system that can map the distribution of lightning with an android smartphone using the trilateration method. The working principle of this system starts from an android device that records electromagnetic waves and the sound of thunder generated by lightning. The lightning voice recognition system based on the Convolutional Neural Network (CNN) is used in the built system. Then the location data (latitude and longitude) from the Global Positioning System (GPS) will be sent to the server to be calculated so that the distance between the location of the lightning and the location of the android device is obtained. Some android devices (at least three devices) will generate the intersection point by the trilateration method. The point of intersection can be assumed to be the location of the lightning.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adrian Wibisono
Abstrak :

Adulterasi beras adalah tindakan pencampuran beras kualitas tinggi dengan kualitas rendah dengan tujuan keuntungan ekonomi. Pada penelitian ini membuat sistem identifikasi adulterasi beras yang memiliki penyusun utama adalah Pandan Wangi dengan beras pencampurnya antara lain adalah IR64 Premium, IR64 Medium 1, IR64 Medium 2, IR64 Medium 3, dan Beras Kualitas Rendah. Pada pembuatan sistem identifikasi menggunakan citra hiperspektral dengan model klasifikasi support vector machine dan convolutional neural network. Model klasifikasi support vector machine dikombinasikan dengan principal component analysis sedangkan pada model klasifikasi convolutional neural network terdiri atas dua arsitektur yaitu autoencoder dan proposed convolutional neural network. Model yang digunakan adalah proposed convolutional neural network yang memiliki hasil paling tinggi diantara yang lainnya dengan hasil akurasi klasifikasi pada beras adulterasi Pandan Wangi dan IR64 Premium sebesar 90%, beras adulterasi Pandan Wangi dan IR64 Medium 1 sebesar 93%, beras adulterasi Pandan Wangi dan IR64 Medium 2 sebesar 97%, beras adulterasi Pandan Wangi dan IR64 Medium 3 sebesar 97%, dan beras adulterasi Pandan Wangi dan Beras Kualitas Rendah sebesar 100%. Dari hasil akurasi klasifikasi tersebut dapat disimpulkan bahwa sistem identifikasi beras adulterasi Pandan Wangi bekerja dengan optimal.


Rice adulteration is an act to mix high quality of rice with low quality rice for beneficial economic purposes. In this study, the rice adulteration testing system which has the main constituent is Pandan Wangi with its mixing rice, among others, IR64 Premium, IR64 Medium 1, IR64 Medium 2, IR64 Medium 3, and Low Quality Rice. In making the assessment system using hyperspectral images with classification models support vector machines and convolutional neural networks. The classification model supports vector machines combined with principal component analysis whereas the convolutional neural network classification model consists of two architectures, namely autoencoder and a proposed convolutional neural network. The model used is the proposed convolutional neural network which has the highest results related to the assessment results on Pandan Wangi and IR64 Premium adulteration at 90%, Pandan Wangi and IR64 Medium 1 adulteration at 93%, Pandan Wangi and IR64 Medium 2 at 97%, Pandan Wangi and IR64 Medium 3 at 97%,  Pandan Wangi and Rice Quality low-rice adulteration by 100%. From the results of verification of this classification it can be concluded that the Pandan Wangi adulteration rice system worked optimally.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Satria Persada
Abstrak :
Perkembangan Artificial Intelligence (AI) sudah berkembang pesat. Dari ketiga arah pengembangan AI yakni computer vision, speech processing dan natural language processing. Speech processing memiliki tren paling rendah di antara ketiga pengembangan tersebut. Meskipun begitu pengembangan di bidang speech processing seperti speech recognition dan keyword spotting sudah banyak di implementasikan seperti model keyword spotting menggunakan Convolutional Neural Network (CNN) di microcontroller, mobile device dan perangkat lainnya. Namun CNN saja belum tentu menghasilkan akurasi yang tinggi maka dicoba Depthwise Separable Convolutional Neural Network (DSCNN) untuk mendapatkan hasil dengan akurasi yang lebih tinggi. Pengembangan model keyword spotting belum banyak diimplementasikan di edge device lainnya, yang dimaksud dengan edge device yaitu perangkat sederhana di sisi pengguna yang kemampuan komputasinya terbatas. Dengan menggunakan DSCNN menunjukkan nilai F1 score yang dibandingkan dengan model CNN. Model DSCNN menghasilkan model dengan nilai F1 score paling optimal dengan 4 layer konvolusi depthwise separable, menggunakan filter konvolusi sebanyak 256 dengan jumlah filter konvolusi depthwise 512 menggunakan optimizer RMSprop dan menggunakan batch size berukuran 126. Dari hasil pengujian dapat diketahui bahwa secara umum DSCNN menghasilkan F1 score yang lebih baik dibandingkan CNN yaitu sebesar 31,8% dengan CNN sebesar 28,35%. Namun DSCNN menggunakan sumber daya yang lebih banyak dan lebih lama waktu responsnya. ......The development of Artificial Intelligence (AI) has grown rapidly. Of the three directions of AI development, namely computer vision, speech processing, and natural language processing. Speech processing has the lowest trend among the three developments. However, many developments in speech processing such as speech recognition and keyword spotting have been implemented, such as the keyword spotting model using the Convolutional Neural Network (CNN) in microcontrollers, mobile devices, and other devices. However, CNN alone does not necessarily produce high accuracy, so a Depthwise Separable Convolutional Neural Network (DSCNN) is used to get results with higher accuracy. The development of the keyword spotting model has not been widely implemented in other edge devices, which is meant by edge devices, namely simple devices on the user's side with limited computing capabilities. Using DSCNN shows the F1 score which is compared with the CNN model. The DSCNN model produces a model with the most optimal F1 score with 4 layers of convolution depthwise separable, using a convolution filter of 256 with a convolution depthwise filter of 512 using the RMSprop optimizer and using a batch size of 126. From the test results, in general DSCNN produces F1 score which is better than CNN, which is 31,8% with CNN at 28,35%. However, DSCNN uses more resources and a longer response time.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oemar Syarief Wibisono
Abstrak :
Beras merupakan makanan pokok mayoritas masyarakat Indonesia. Jika dibandingkan dengan konsumsi tahun 2019, konsumsi beras nasional meningkat sekitar 4,67 persen pada tahun 2021. Hal ini menunjukan bahwa setiap tahun konsumsi beras nasional akan meningkat karena seiring dengan pertumbuhan jumlah penduduk Indonesia. Sehingga dibutuhkan data produksi beras yang akurat dan tepat waktu untuk dapat menjaga ketersediaan stok beras nasional. Data citra satelit bisa menjadi alternatif untuk memprediksi produksi padi dikarenakan kekurangan yang dimiliki oleh metode survei yang dilakukan oleh BPS yaitu biaya yang cukup tinggi dan terdapat tenggang waktu diseminasi data. Gabungan citra SAR dan Optik dapat meningkatkan akurasi dari model yang dibangun. Selain itu penggunaan model deep learning memiliki akurasi yang lebih baik jika dibandingkan metode machine learning konvensional salah satunya kombinasi CNN dan Bi-LSTM yang mampu mengekstraksi fitur serta memiliki kemampuan untuk memodelkan data temporal dengan baik. Output yang diperoleh dengan menggunakan metode CNNBiLSTM untuk mengklasifikasikan fase pertumbuhan padi, menghasilkan akurasi yang terbaik dengan nilai akurasi 79,57 pada data testing dan 98,20 pada data training serta F1-score 79,78. Dengan menggunakan kombinasi data citra sentinel 1 dan 2 akurasi dari model LSTM dapat ditingkatkan. Selanjutnya akurasi yang didapatkan untuk model regresi produktivitas padi masih kurang baik. Akurasi terbaik dihasilkan oleh model random forest dengan nilai MAPE 0.1336, dan RSME 0,6871. ......Rice is the staple food of the majority of Indonesian people. When compared to consumption in 2019, national rice consumption will increase by around 4.67 percent in 2021. This shows that every year rice consumption will increase in line with the growth of Indonesia's population. So that accurate and timely rice production data is needed to be able to maintain the availability of national rice stocks. Satellite imagery data can be an alternative for predicting rice production due to the drawbacks of the survey method conducted by BPS, which relatively high cost and the time span for data dissemination. The combination of SAR and Optical images can increase the accuracy of the model built. In addition, the use of deep learning models has better accuracy when compared to classical machine learning methods, one of them is the combination of CNN and Bi-LSTM which are able to extract features and have the ability to model temporal data properly. The output obtained using the CNNBiLSTM method to classify rice growth phases, produces the best accuracy with an accuracy value of 79.57 on testing data and 98.20 on training data and an F1-score of 79.78. By using a combination of sentinel 1 and 2 image data, the accuracy of the LSTM model can be improved. Furthermore, the accuracy obtained for the rice production regression model is still not good. The best accuracy was produced by the random forest model with a MAPE value of 0.1336 and RSME of 0.6871.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Agung Santosa
Abstrak :
[ABSTRAK
Pesatnya perkembangan Deep Learning akhir-akhir ini juga menyentuh ASR berbasis HMM, sehingga memunculkan teknik hibrid HMM-ANN. Salah satu teknik Deep Learning yang cukup menjanjikan adalah penggunaan arsitektur CNN. CNN yang memiliki kemampuan mendeteksi local correlation sesuai untuk digunakan pada data spectrum suara. Spectrogram memiliki karakteristik local correlation yang nampak secara visual. Penelitian ini adalah eksperimen penggunaan spectrogram sebagai fitur untuk HMM-CNN untuk meningkatkan kinerja ASR berbasis HMM. Penelitian menyimpulkan spectogram dapat digunakan sebagai fitur untuk HMM-CNN untuk meningkatkan kinerja ASR berbasis HMM.
ABSTRACT
The latest surge in Deep Learning affecting HMM based ASR, which give birth to hybrid HMM-ANN technique. One of the promising Deep Learning technique is the implementation of CNN architecture. The ability of CNN to detect local correlation make it suitable to be used for speech spectral data. Spectrogram as a speech spectral data has local correlation characteristic which is visually observable. This research is an experiment to use spectrogram as a feature for HMM-CNN to add to the performance of HMM based ASR. This research found that spectrogram is indeed can be used as a feature for CNN to add to the performance of HMM based ASR., The latest surge in Deep Learning affecting HMM based ASR, which give birth to hybrid HMM-ANN technique. One of the promising Deep Learning technique is the implementation of CNN architecture. The ability of CNN to detect local correlation make it suitable to be used for speech spectral data. Spectrogram as a speech spectral data has local correlation characteristic which is visually observable. This research is an experiment to use spectrogram as a feature for HMM-CNN to add to the performance of HMM based ASR. This research found that spectrogram is indeed can be used as a feature for CNN to add to the performance of HMM based ASR.]
2015
T43862
UI - Tesis Membership  Universitas Indonesia Library
cover
Dessy Ana Laila Sari
Abstrak :
ABSTRAK
Klasifikasi emosi manusia merupakan salah satu topik hangat yang dapat dimanfaatkan dalam berbagai bidang, baik medis maupun militer. Emosi manusia sendiri dapat diklasifikasi dengan berbagai metode, salah satunya adalah Machine Learning (ML). Machine learning merupakan proses pembelajaran computer untuk menyelesaikan task tertentu, dengan menggunakan metode ini hasil yang didapatkan akan lebih akurat dan konstan. Dalam tesis ini akan dikembangkan sistem klasifikasi emosi manusia berdasarkan sinyal EEG dari DEAP yang berbasis ML dengan berbagai studi metode ML, seperti Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) hingga Random Forest (RF). Sistem klasifikasi kemudian akan dikembangkan kembali menggunakan metode Convolutional Neural Network (CNN). Dari penelitian ini didapatkan bahwa nilai recognition rate yang dihasilkan hanya berkisar 50% dengan nilai maksimal 62%. Sistem juga diberikan feature selection layer untuk memaksimalkan recognition rate, namun penambahan ini tidak memberikan hasil yang signifikan. Dengan demikian recognition rate pada sistem klasifikasi menggunakan sinyal EEG sangat bergantung pada pemrosesan sinyal raw.
ABSTRACT
The classification of human emotions is a hot topic that can be utilized in various fields, both medical and military. Human emotions themselves can be classified by various methods, one of which is Machine Learning (ML). Machine learning is a process of learning computers to complete certain tasks, using this method the results obtained will be more accurate and constant. In this thesis a human emotion classification system will be developed based on EEG signals from DEAP dataset using various ML method studies, such as Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) to Random Forest (RF). The classification system will be developed again using the Convolutional Neural Network (CNN) method. From this study it was found that the value of the recognition rate produced is only around 50% with a maximum value of 62%. The system is also given a feature selection layer to maximize recognition rate, but this addition does not provide significant results. Thus the recognition rate in the classification system using EEG signals is very dependent on raw signal processing.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8   >>