Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133 dokumen yang sesuai dengan query
cover
Anderberg, Michael R.
New York: Academic Press, 1973
519.53 AND c
Buku Teks SO  Universitas Indonesia Library
cover
Sri Agustina P.
"ABSTRAK
Salah satu metode dalam teknik Analisis Multivariat yang berkenaan dengar pengelompokan obyek atau variabel adalah Analisis Cluster. Analisis Cluster mengelompokkan obyek atau variabel semata-mata berdasarkan similaritas mereka, sehingga kelompok cluster yang dihasilkan akan memiliki variabilitas dalam cluster yang lebih kecil daripada variabilitas antar cluster. Dengan Analisis Cluster kita dapat memecahken populasi secara empirik dalam beberapa kelompok yang relatif homogen untuk memudahkan analisis statistik selanjutnya. Sebagai contoh aplikasi 5 Analisis Cluster dengan metode Nonhirarki (K-Means) digunakan untuk mengelompokkan secara empirik 324 Rumah Sakit Umum Departemen Kesehatan dan Pemerintah Daerah Republik Indonesia yang diukur peda 59 variabel untuk dilihat kesesuaiannya dengan pengelompokan atas tipe A. B. C. D. berasarkan kriteria Departemen Kesehatan Republik Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
cover
Heru Suhartanto
"Banyak model fenomena alam, aplikasi engineering, dan industri membutuhkan Sumber Daya Komputasi (SDK) yang tinggi untuk memroses data sehingga menghasilkan informasi yang dibutuhkan. Teknologi komputasi tingkat tinggi pun diperkenalkan banyak peneliti dengan diciptakannya Supercomputer beserta Operating System dan perangkatbantu (tools) pengembangnya seperti kompilator dan pustaka (library). Namun, mahalnya investasi SDK ini baik dalam pengadaan maupun pemeliharaannya memberatkan banyak pihak, sehingga diperlukan alternatif SDK yang tetap berkinerja tinggi tetapi murah. Untuk mengatasi keterbatasan tersebut, para peneliti telah membuat konsep alternatif, yakni konsep komputasi parallel pada jaringan komputer yang sudah ada. Banyak perangkatbantu diciptakan guna mengembangkan aplikasi dalam sistem SDK yang memanfaatkan mesin atau komputer dalam suatu jaringan, dimana masing-masing komputer ini berperan sebagai pemroses layaknya pemroses dalam sistem super computer.
Tulisan ini akan mengkaji beberapa perangkat bantu yang cukup dominan di kalangan pemakai, yakni Parallel Virtual Machine (PVM), Message Passing Interface (MPI), Java Remote Method Invocation (RMI), serta Java Common Object Request Broker Architecture (CORBA) dan menyajikan eksperimen untuk mengetahui perangkatbantu mana yang paling cocok sehingga dapat pembantu calon user dalam memilihnya. Percobaan dilakukan pada SDK berbasis jaringan komputer pribadi (Personal Computer) dan menghasilkan percepatan yang cukup berarti. Dari keempat perangkatbantu tersebut masing-masing teridentifikasi cocok untuk pengembangan pada kondisi tertentu.

A Study on Parallel Computation Tools on Networked PCs. Many models for natural phenomena, engineering applications and industries need powerfull computing resources to solve their problems. High Performance Computing resources were introduced by many researchers. This comes in the form of Supercomputers and with operating systems and tools for development such as parallel compiler and its library. However, these resources are expensive for the investation and maintenance, hence people need some alternatives. Many people then introduced parallel distributed computing by using available computing resource such as PCs. Each of these PCs is treated as a processors, hence the cluster of the PC behaves as Multiprocessors Computer. Many tools are developed for such purposes.
This paper studies the peformance of the currently popular tools such as Parallel Virta\ual Machine (PVM), Message Passing Interface (MPI), Java Remote Method Invocation (RMI) and Java Common Object Request Broker Architecture (CORBA). Some experiments were conducted on a cluster of PCs, the results show significant speed up. Each of those tools are identified suitable for a certain implementation and programming purposes."
Depok: Lembaga Penelitian Universitas Indonesia, 2006
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Zalfa Nabilah
"ABSTRACT
Dalam dunia arsitektur, Sefaira digunakan secara bersamaan dalam process desain untuk menganalisa ketahanan yang dikenal di level internasional. Proyek tugas akhir ini mengukuhkan nilai kelestarian terhadap lingkungan serta rasa komunitas sebagai fokus dasar untuk membangun ulang kehidupan asli masyarakat Australia pinggiran kota. Pembangunan cluster ditujukan untuk 230 orang dengan maksimal 80m2 luas bangunan per-rumah. Arahan desain adalah untuk merancang pola induk berdasarkan pendekatan keberlanjutan. Proyek ini menguji apakah pertanian yang membaharui memiliki peran dalam pembuatan kota modern. Oleh karena itu, arsitektur yang dirancang bersifat menyambungkan kembali dari apa yang hilang dengan Sefaira sebagai panduan.

ABSTRACT
In architecture world, Sefaira is used respectively on the design process to analyse the sustainability of a building and product as an internationally recognized rating system. This final project consolidates sustainability values and sense of community as the main focus as it is to recreate an Australian authentic suburbia living. The development of cluster is for 230 residents with R40 residential subdivision zoning or equivalent as maximum of 80m2 built area per-house. The design brief given by Dr. Simon Pendal, one of lecturer in Curtin University and architectural practice in Perth, is to propose a masterplan design based on sustainability approach. The project test whether regenerative agriculture has a role to play in the making of the contemporary city. Accordingly, the appropriate architecture is to reconnect to what has been missing based on Sefaira as a guidance."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kacung Marijan
Surabaya: Airlangga University Press, 2006
343.07 KAC d
Buku Teks  Universitas Indonesia Library
cover
Millati Indah
"Salah satu misi pembangunan adalah mewujudkan kualitas hidup manusia Indonesia yang tinggi, maju, dan sejahtera, dengan salah satu agenda prioritasnya meningkatkan kualitas hidup manusia Indonesia. Untuk mengevaluasi terlaksananya misi dan agenda prioritas tersebut diperlukan indikator yang terukur. Hasil evaluasi tersebut dapat dijadikan pertimbangan dalam membuat kebijakan untuk memperbaiki tingkat kesejahteraan.
Salah satu pengukuran yang dapat digunakan adalah Indikator Kesejahteraan Rakyat (Inkesra) yang disusun Badan Pusat Statistik (BPS) yang diolah dari data Survei Sosial Ekonomi Nasional (SUSENAS). Indikator ini mengukur kesejahteraan dengan menggunakan pendekatan kebutuhan dasar (basic needs).
Untuk mengukur perubahan tingkat kesejahteraan kabupaten/kota, perlu dilakukan analisis perpindahan cluster dari periode ke periode. Salah satu metode yang dapat digunakan untuk melakukan clustering adalah Self-organizing Maps (SOM). Hasil clustering dengan SOM kemudian dapat dianalisis menggunakan Relative Density Self-Organizing Maps (ReDSOM).
Variabel yang digunakan pada penelitian ini sebanyak 22 variabel dengan jumlah record 497 kabupaten/kota. Data yang dibandingkan adalah data tahun 2011 dan 2014. Dari hasil penelitian ini terdapat enam cluster pada tahun 2011 dan tujuh cluster pada tahun 2014. Variabel yang berubah secara signifikan pada sebagian besar perpindahan cluster adalah Angka Partisipasi Sekolah.

One of the development goal is to improve Indonesian people’s quality of life including welfare. A measurable indicator is needed to evaluate the realisation of the goal. The evaluation results can be used to make beter policy to improve welfare.
In Indonesia we can use Welfare Indicator (Indikator Kesejahteraan Rakyat/Inkesra) to measure welfare. This indicator is based on basic needs. This indicator is processed from SUSENAS.
To measure welfare improvement, we need to analyze cluster change over periods. A method that can be used clustering is Self-organizing Maps (SOM). Based on clustering result of data from different period, we can analyze cluster change.
This research used 22 variables and 497 records. The result of this research is regencies/municipalities in 2011 can be divided into six clusters and seven clusters in 2014. Variable that changed significantly in most of migrated clusters is School Participation.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Gan, Guojun
"Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results.
The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB programming languages."
Philadelphia: Society for Industrial and Applied Mathematics, 2007
e20448780
eBooks  Universitas Indonesia Library
cover
Vergin Raja Sarobin M
"The demand for a Wireless Sensor Network (WSN) has increased enormously because of its great ability to supervise the outside world as well as due to its vast range of applications. Since these sensor nodes depend greatly on battery power and being deployed in adverse environments, substituting the battery is a tiresome job. Cluster-based routing techniques are prominent methods to extend the lifetime of wireless sensor networks. In this research, the work on energy efficient clustering approach is considered in two phases. During the cluster head selection phase, cluster heads are chosen which can stabilize the power consumption in sensor networks, by considering both the residual energy and distance of node with respect to sink. Later, during the cluster formation phase, a non-cluster head node will choose a cluster head that lies in close proximity with the center point between the sensor nodes and sink. Also, these non-cluster head nodes should be within the transmission range of the cluster head, as selected by the above method. Initially, the Low Energy Adaptive Clustering Hierarchy (LEACH) which is an eminent protocol for sensor networks is investigated. Furthermore, the same LEACH protocol is enhanced by proposing an effective cluster head election scheme as well as a new cluster formation scheme as mentioned above. Simulation results reveal that the proposed algorithm outperforms the traditional LEACH protocol in prolonging network lifetime."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:1 (2016)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>