Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Risti Dwi Putri
Abstrak :
ABSTRAK
Pada saat ini, buah-buahan dilapiskan lilin untuk mempertahankan kualitas dan memperpanjang usia simpan buah. Pengukuran kualitas buah yang dilapiskan lilin umumnya bersifat destruktif. Pengukuran kualitas buah berlapis lilin menggunakan citra VNIR belum pernah dilakukan, sehingga diperlukan pengkajian lebih lanjut mengenai pengaruh lapisan lilin pada pengukuran kualitas buah berbasis citra VNIR. Dalam penelitian ini, lilin lebah digunakan untuk melapiskan apel malang. Partial Least Square Regression (PLSR) dan Regression Tree (RT) digunakan sebagai algoritma seleksi fitur dan model regresi. Dalam penelitian ini, pemodelan dibentuk menggunakan apel tidak berlapis lilin, apel berlapis lilin, gabungan antara apel tidak berlapis lilin dan apel berlapis lilin. Selanjutnya, dilakukan pengujian apel malang berlapiskan lilin terhadap model prediksi kekerasan apel malang tidak berlapiskan lilin. Sistem prediksi kekerasan memiliki performa terbaik jika menggunakan data pelatihan dan data pengujian berupa apel tidak berlapis lilin saja. Hasil dari model PLSR dan RT menggunakan apel tidak berlapis lilin sebesar 0,97 dan 0,88 pada R2; 3,22 dan 6,65 pada RMSE. Berdasarkan hasil tersebut, lapisan lilin pada permukaan buah dapat memengaruhi hasil pengukuran berbasis citra VNIR.
ABSTRACT
These days, wax coating was applied on fruits to maintain its quality and extends the shelf life. The quality measurement of the waxed fruit was destructive in most cases. The quality measurement of the waxed fruit with VNIR image had never been done before, so further study about the effect of wax coating for VNIR image-based fruit quality measurement was needed. In this study, beeswax is used to coated Malang apples. Partial Least Square Regression (PLSR) and Regression Tree (RT) used as feature selection and regression model algorithm.  In this study, a regression model was built using non-waxed Malang apples, waxed Malang apples, a combination of non-waxed Malang apples and waxed Malang apples. Next, the waxed Malang apples was tested to the firmness prediction model of the non-waxed Malang apples. Firmness prediction system of Malang apples obtained the best performance if using training data and test data of non-waxed Malang apples. The results of PLSR and RT model using non-waxed Malang apples were 0.97 and 0.88 for R2, 3.22 and 6.55 for RMSE. Based on these results, wax coating on the surface of the fruit could disrupt the measurement results of VNIR image.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizqi Imam Gilang Widianto
Abstrak :
Sistem prediksi kadar flavonoid pada daun Bisbul (Diospyros discolor Willd.)  berbasis citra VNIR sudah terbukti dapat dilakukan dan mendapatkan hasil yang cukup baik. Hasil tersebut bisa didapat karena data citra VNIR memiliki fitur yang sangat banyak (>200 fitur) sehingga dapat memberikan banyak informasi terkait kandungan flavonoid pada daun Bisbul. Namun, banyaknya jumlah fitur akan menyebabkan proses latihan pada model prediksi cukup lama dan akan memberikan beban yang cukup besar pada proses komputasi. Penelitian ini membahas tentang proses optimasi yang dilakukan kepada model regresi PLSR dengan menggunakan algoritma koloni lebah untuk meningkatkan performa dan mengurangi waktu latihan model prediksi kadar flavonoid pada daun Bisbul. Sistem prediksi menghasilkan performa dasar (PLSR) sebesar 23,6 RMSE, 0,86 pada R2, dan waktu training selama 0,6 detik untuk PLSR dengan jumlah 35 komponen dan 23,07 RMSE, 0,87 pada R2, dan waktu training selama 0,63 detik untuk PLSR dengan jumlah 50 komponen. Peningkatan performa sistem prediksi menggunakan algoritma koloni lebah berhasil dan menghasilkan performa sebesar 22,8 RMSE, 0,87 pada R2, dan waktu training selama 13,6 detik untuk PLSR dengan jumlah 35 komponen dan 22,69 RMSE, 0,88 pada R2, dan waktu training selama 13,7 detik untuk PLSR dengan jumlah 50 komponen.
Flavonoid content prediction system in the velvet apple leave based on VNIR image (Diospyros discolor Willd.) has been proven to be able to get good results. Those results could be earned because of VNIR image contains a lot of features (>200 features) that give a lot of information to predicts flavonoid content in velvet apple leave. Unfortunately, those features also causing a long training time and put a considerable burden on the computational process. Feature selection process using random forest algorithm proven to be able to reduce the training time, but it results is still need long time to train the prediction system. This study is aim to build and optimize PLSR prediction system using artificial bee colony algorithm to get a better performace and faster training time than random forest regression. Base performance by using 35 components of PLSR is 23.6 of RMSE, 0.86 of R2, and 0,6 seconds of training time. Base performance by using 50 components of PLSR is 23.07 of RMSE, 0.87 of R2, and 0,63 seconds of training time. After using artificial bee colony algorithm to optimize the PLSR prediction models, the results are  22.8 of RMSE, 0.87 of R2, and 13,6 seconds of training time by using 35 components of PLSR and 22.69 of RMSE, 0.88 of R2, and 13,7 seconds of training time by using 50 components of PLSR.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library