Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Nathasya Eliora Kristianti
Abstrak :
Citra hyperspectral merupakan citra yang menyimpan informasi spektrum elektromagnetik dengan jangkauan panjang gelombang tertentu secara kontinu untuk tiap pikselnya. Citra hyperspectral ini lebih kaya informasi dibanding citra RGB biasanya yang hanya menyimpan informasi dari warna merah, hijau, dan biru. Oleh karena itu, citra hyperspectral banyak digunakan di berbagai bidang, salah satunya untuk analisis tinta pada forensik dokumen. Dalam beberapa kasus, tinta yang berbeda distribusi spektranya dapat terlihat sama di mata manusia di bawah sumber cahaya tertentu. Fenomena ini disebut metamerism. Akan tetapi, tinta yang terlihat sama ini tidaklah sama dalam representasi hyperspectral. Penelitian ini bertujuan untuk mendapatkan representasi terbaik citra hyperspectral dengan menggunakan reduksi dimensi PCA dan t-SNE untuk melakukan pengelompokan K-means. Didapatkan hasil bahwa metode t-SNE merupakan hasil terbaik dalam beberapa eksperimen yang dilakukan dengan rata-rata precision 0.782 dan rata-rata recall 0,783. Diharapkan hasil penelitian ini dapat bermanfaat di bidang analisis dokumen ......Hyperspectral images are images that store electromagnetic spectrum information with a certain range continuously for each pixel. These hyperspectral images contain a lot more information compared to the more common RGB image that only has red, blue, and green bands. Thus, hyperspectral images can be used in various applications, such as for ink analysis in document forensics. In some cases, inks with different spectral distribution may appear similar to the human eye due to metamerism. However, these similar looking inks are not similar in their hyperspectral representation. This research aims to obtain the best representation for hyperspectral images by using PCA and t-SNE dimensionality reduction to perform K-means clustering. From the results, we found that the t-SNE dimensionality reduction techniques gives the best result with average precision of 0,782 and average recall of 0,783. Hopefully this research can be useful for future works in document analysis.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan Edwin
Abstrak :
Citra berkabut disebabkan oleh partikel mikro di udara yang menyerap atau memantulkan gelombang elektromagnetik. Hasil citra yang didapat akan buram atau kehilangan informasi secara detail. Penelitian ini bertujuan untuk menganalisis pengaruh kabut terhadap citra hyperspectral termasuk wavelength dependence, perubahan hue, dan ekstraksi informasi warna. Selain itu, penelitian ini akan membandingkan hasil dehazing pada citra spektral berkabut dengan citra spektral yang ditransformasi menjadi citra RGB. Hasil penelitian menunjukkan bahwa pengaruh kabut pada citra spektral adalah wavelength dependent. Selanjutnya perubahan kabut hampir sama sekali tidak signifikan perubahan pada hue tetapi perubahan terlihat dengan jelas pada intensitas citra. Visualisasi warna citra hyperspectral perlu dilakukan koreksi terhadap jarak wavelength untuk menghasilkan citra RGB yang baik. Selain itu, hasil dehazing pada citra hyperspectral lalu divisualisasi warna dengan metode CLTR berhasil memulihkan warna pada citra dibandingkan dehazing terhadap citra RGB. ......Hazy images are caused by microparticles in the air absorbing or reflecting electromagnetic waves. The resulting image will be blurry or lose detailed information. This study analyzes the effect of fog on the hyperspectral image, including wavelength-dependence, hue changes and color information extraction. This study will also compare the results of dehazing on a hazy hyperspectral image with a spectral image transformed into an RGB image. The results showed that the effect of fog on the spectral image is wavelength dependence. Furthermore, the change in fog is almost completely insignificant for the shift in hue. Still, the difference is clearly visible in the intensity of the image. Hyperspectral image color visualization needs to be corrected to the distance wavelength to produce an excellent RGB image. Besides, the results of dehazing on a hyperspectral image and then visualized by the CLTR method succeeded in restoring the color in the image compared to dehazing against an RGB image.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reza Sugiarto
Abstrak :
ABSTRACT
Visualisasi pertulangan daun telah banyak dilakukan menggunakan citra RGB dan metode pengolahan yang digunakan adalah pemrosesan morfologi. Hasil dari metode tersebut dapat menampilkan pola pertulangan daun atau venasi dengan baik, namun sangat terbatas pada resolusi kamera yang digunakan serta keterbatasan informasi spektral citra daunyan dihasilkan. Pada penelitian kali visualisasi venasi berhasil dilakukan dengan citra hyperspectral dengan panjang gelombang 400-1000nm. Sistem visualisasi pada penelitian kali ini menerima input citra hyperspectral dan menghasilkan output berupa citra venasi. Proses automasi mendapatkan citra venasi menggunakan model klasifikasi. Model klasifikasi dibuat berdasarkan infomasi panjang gelombang dari vena dan bagian helaian daun. Tujuan model klasifikasi ini adalah memprediksi bagian vena pada citra hyperspectral Algoritma klasifikasi yang digunakan pada penelitian ini adalah Support Vector Machine SVM , Multi Layer Perceptron Classifier MLPC , serta Decision Tree DT . Hasil akurasi dari model mencapai 97 pada model SVM, 95 pada model MLPC, dan 81 pada model DT. Model SVM dan MLPC selanjutnya digunakan untuk memprediksi citra hyperspectral untuk menghasilkan citra venasi daun bayam merah. Hasil akhir, berupa citra venasi menggunakan model SVM lebih baik karena mampu memvisualisasikan bagian vena primer dan vena sekunder dibandingkan citra venasi dengan model MLPC.
ABSTRACT
Venation visualization broadly have been done by RGB images using morphological image processing. The result of that method can visualizing leaf venation properly, but it depends on camera resolution and limited spectral information. In this research, we developing venation visualization system using hyperspectral image on band 400 1000nm. Our system visualizing red amaranth leaf venation as a output and hyperspectral image for input. To automated identifying venation region, we built classification model to predict based on spectral information. Classification model take every hyperspectral image pixel to predict leaf vein. In this work, we made 3 classification model namely SVM Support Vector Machine , MLPC Multi Layer Perceptron Classifier , and DT Decision Tree . Our model trained by 5 fold cross validation. Average accuracy score for SVM model up to 97 , 95 for MLPC and 81 on DT. Regard this accuracy result, SVM and MLPC model used for constructed venation image and DT model fall on overfitting state. The final result, SVM perform better than MLPC by visualizing primary vein and secondary vein.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library