Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Akmal Farhan Raiyan
Abstrak :
Kabut merupakan fenomena alami yang diakibatkan oleh keberadaan partikel kecil di atmosfer. Kabut yang ada di atmosfer dapat mengurangi kontras dan mendistorsi warna hasil citra yang diambil dalam kondisi alami. Keberadaan kabut pada citra sangat mengganggu aplikasi computer vision maupun fotografi konsumen. Sebagian besar algoritma computer vision memerlukan citra yang jernih untuk dapat berfungsi dengan baik, sehingga diperlukanlah teknik untuk menghilangkan kabut dari citra. Image dehazing bertujuan untuk memulihkan citra jernih dari citra yang dirusak oleh kabut. Image dehazing dapat dilakukan menggunakan model machine learning. Dewasa ini, banyak model machine learning yang digunakan berbasiskan arsitektur Vision Transformer. Penelitian sebelumnya mengenai Vision Transformer menunjukkan bahwa model Transformer dapat berkinerja lebih baik dibandingkan model state-of-the-art ResNet untuk image recognition jika dilatih menggunakan dataset yang besar. Pada penelitian ini, model Uformer dilatih menggunakan dataset citra berkabut dengan ukuran yang besar. Dilakukan juga implementasi Restormer untuk sebagai model alternatif untuk merestorasi citra berkabut. Pengujian kinerja model Uformer dan Restormer dilakukan menggunakan dataset HAZE dan RESIDE. Analisis terhadap model dilakukan secara kualitatif, kuantitatif, dan cross-dataset. Hasil evaluasi model Uformer dan Restormer dibandingkan dengan model Mod PDR-Net Based Conditional Generative Adversarial Network. Evaluasi hasil Uformer dan Restormer menunjukkan bahwa model berbasis Transformer dapat menyaingi Mod PDR-Net Based CGAN untuk restorasi citra berkabut pada dataset testing, namun tidak dapat mengungguli model tersebut dalam pengujian cross-dataset. ...... Haze is a natural phenomenon caused by the presence of small particles in the atmosphere. Haze present in the atmosphere can reduce the contrast and distort the color of images taken under natural conditions. The presence of haze in an image is detrimental to computer vision applications and consumer photography. Most computer vision algorithms require clear images to function properly, hence the need for techniques to remove haze from images. Image dehazing aims to recover a clear image from an image corrupted by haze. Image dehazing can be done using machine learning models. Nowadays, many machine learning models used for dehazing are based on the Vision Transformer architecture. Previous research on Vision Transformer shows that the Transformer model can perform better than the state-of-the-art ResNet model for image recognition when trained using large datasets. In this research, the Uformer model is trained using large dataset of hazy images. Restormer is also implemented as an alternative model for restoring hazy images. Performance testing of the Uformer and Restormer models was conducted using the HAZE and RESIDE datasets. The models were analyzed qualitatively, quantitatively, and through cross-dataset. The evaluation results of the Uformer and Restormer models are compared with the Mod PDR-Net Based Conditional Generative Adversarial Network model. The evaluation of the Uformer and Restormer shows that Transformer-based models can rival Mod PDR-Net Based CGAN for image dehazing on the testing dataset, but cannot outperform the model in cross-dataset testing.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanda Ryaas Absar
Abstrak :
Kabut menjadi salah satu masalah yang terjadi dalam kehidupan sehari-hari dan dapat menyebabkan objek sulit terlihat. Fenomena ini dapat ditangkap oleh kamera dan mengubah informasi mengenai warna dan kontras yang tertangkap pada citra. Perubahan informasi ini berpengaruh besar pada penerapan computer vision dalam melakukan berbagai tugas, seperti deteksi objek, klasifikasi, dan sistem navigasi. Oleh karena itu, perlu dilakukan restorasi citra berkabut. Restorasi citra berkabut ini terus dikembangkan, mulai dari restorasi berbasiskan persamaan fisika hingga deep learning. Uformer menjadi salah satu arsitektur deep learning yang dikembangkan untuk melakukan restorasi citra berkabut dengan menggunakan ide dasar dari Transformer. Pada penelitian ini, dilakukan implementasi Uformer untuk restorasi citra berkabut. Pengujian performa model Uformer dilakukan menggunakan dataset O-HAZE, NH-HAZE, DENSE-HAZE, dan SOTS. Analisis dilakukan secara kuantitatif, kualitatif, dan cross-dataset. Hasil restorasi dari Uformer ini dibandingkan dengan Mod PDR-Net dan Mod PDR-Net Based Conditional Generative Adversarial Network. Evaluasi hasil Uformer menunjukkan bahwa model tersebut belum dapat menandingi hasil dari model Mod PDR-Net dan Mod PDR-Net Based CGAN dalam melakukan restorasi citra berkabut dengan dataset yang digunakan. ......Haze has become a common problem that happens in daily life and can make objects hard to be seen. This phenomenon can be captured by camera along with changed color and contrast on the captured image. These changes largely affect computer vision tasks, such as object detection, classification, and navigation systems. To mitigate this problem, image dehazing is necessary. Image dehazing has constantly been developed to solve this problem, starting from restoration using the physical model to deep learning approaches. Uformer was introduced as one deep learning architecture for image restoration, inspired by the Transformer architecture. In this research, Uformer has been implemented for image dehazing. The Uformer model performance was evaluated using O-HAZE, NHHAZE, DENSE-HAZE, and SOTS datasets through quantitative, qualitative and cross dataset evaluation. The result showed that Uformer is not able to outperform Mod PDR-Net and Mod PDR-Net Based CGAN for image dehazing on the selected datasets.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferro Geraldi Hardian
Abstrak :
Deteksi objek merupakan permasalahan populer pada bidang computer vision yang bertujuan untuk mengidentifikasi dan mencari lokasi objek pada suatu citra. Performa metode-metode deteksi objek tentunya dipengaruhi oleh kualitas citra. Di sisi lain, pada kehidupan sehari-hari terdapat citra berkabut. Citra berkabut adalah citra yang diambil dalam kondisi berkabut. Kabut tersebut dapat menghamburkan sinar cahaya dan menyebabkan citra yang diambil mengalami penurunan kualitas. Dataset-dataset citra yang populer digunakan untuk deteksi objek juga biasanya mengasumsikan citra diambil pada kondisi tanpa kabut. Oleh karena itu kebanyakan metode deteksi objek pada umumnya tidak dapat berperforma dengan baik pada citra berkabut. YOLOv4 merupakan arsitektur deteksi objek state-of-the-art yang memiliki performa tinggi baik dari segi akurasi dan kecepatan. Penelitian ini bertujuan untuk menguji kapasitas YOLOv4 dengan citra yang berkabut dan juga mencari skenario pelatihan terbaik bagi YOLOv4 untuk mendeteksi objek pada citra berkabut. Skenario pelatihan yang diusulkan ada tiga, pelatihan hanya dengan citra tanpa kabut, pelatihan hanya dengan citra berkabut, dan pelatihan dengan kedua tipe citra. Pengujian dilakukan pada dataset Hazy Series dimana permasalahan utamanya adalah untuk mendeteksi satu buah objek Macbeth ColorChecker yang ada pada setiap citra. Hasil penelitian menunjukan bahwa kabut memiliki pengaruh yang besar pada model yang tidak dilatih dengan citra berkabut. Selain itu, ditunjukan bahwa model YOLOv4 yang dilatih dengan citra berkabut dan citra tanpa kabut memiliki performa terbaik, dengan akurasi 0,88 dan Intersection of Union (IOU) 0,71 untuk dataset Hazy. ......Object detection is a well known problem in the computer vision field that aims to identify and locate objects in images. The performance of object detection methods is influenced by the quality of the images. However, in real world situations, it is possible to have hazy images. Hazy images are images that are taken in hazy conditions. Haze occurs because of scattering light in a medium that has micro-particles and causes the quality of the image to worsen. Well known object detection datasets also commonly assume that the images are taken in haze-free conditions. As a result, most object detection methods cannot perform well when faced with hazy images. YOLOv4 is a state-of-the-art object detection architecture that has high performance in both accuracy and speed. This research aims to test YOLOv4 capability in handling hazy images while also searching for the best training scenario for YOLOv4 to detect object in hazy images. There are three proposed training scenarios, they are training with only haze-free images, training with only hazy images and training with both. Evaluation is done on Hazy Series dataset where the main task is to detect one Macbeth ColorChecker object in each image. Research’s results indicate that haze has a big effect on models that are not trained with hazy images. They also indicate that the YOLOv4 model that is trained with both haze-free images and hazy images has the best performance, with an accuracy of 0,81 and Intersection of Union (IOU) of 0,71 for hazy images.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cahyo Adhi Hartanto
Abstrak :
Aplikasi computer vision meliputi pendeteksian objek, klasifikasi citra, dan lain-lain. Performa dari aplikasi computer vision ini biasanya kurang baik jika digunakan pada gambar yang kabur. Gambar kabur disebabkan oleh kondisi lingkungan yang melibatkan mikropartikel di udara sehingga menyebabkan penurunan kualitas gambar. Dehazing gambar tunggal diperlukan untuk menjaga kualitas gambar yang baik. Berbagai metode dehazing citra tunggal telah dikembangkan, baik metode berbasis piksel atau deep learning. Berbagai arsitektur deep learning telah dikembangkan untuk mengatasi masalah single image dehazing, salah satunya adalah PDR-Net. Dalam studi ini, penulis mengusulkan modifikasi arsitektur PDR-Net untuk mendapatkan gambar yang direstorasi secara visual sebaik mungkin. Arsitektur Modified PDR-Net (PDR-Net M) yang diusulkan dilatih dengan dua set data, yaitu O-Haze dan Dense-Haze, dan menjalani uji ketahanan menggunakan dataset NH-Haze, SOTS, dan beberapa gambar kabur yang diunduh dari Google Image. Hasil modifikasi PDR-Net menunjukkan hasil terbaik saat restorasi citra citra kabur pada data uji O-Haze dan Dense-Haze, dengan Structural Similarity (SSIM) 0,8042, Peak Signal-to-Noise Ratio (PSNR) 20,65,00perbedaan warna 9,26 , Root Mean Square Error (RMSE) 0.11 dan Naturalness Image Quality Evaluator (NIQE) 3.94. Meskipun pada uji robustness ketiga, PDR Net-Modified mengalami kesulitan dalam restorasi citra karena karakteristik dataset yang sangat berbeda dengan data latih, PDR-Net Modified masih unggul pada uji robustness pertama dan kedua. ......Computer vision applications include object detection, image classification, and others. The performance of this computer vision application is usually not good when used on blurred images. Blurred images are caused by environmental conditions involving microparticles in the air causing a decrease in image quality. Dehazing a single image is necessary to maintain good image quality. Various methods of single image dehazing have been developed, either pixel-based or deep learning methods. Various deep learning architectures have been developed to overcome the problem of single image dehazing, one of which is PDR-Net. In this study, the authors propose a modification of the PDR-Net architecture to obtain the best possible visually restored image. The proposed Modified PDR-Net (PDR-Net M) architecture was trained with two datasets, namely O-Haze and Dense-Haze, and underwent robustness testing using the NH-Haze dataset, SOTS, and some blurred images downloaded from Google Image. PDR-Net modification results show the best results when restoring blurred images on O-Haze and Dense-Haze test data, with Structural Similarity (SSIM) 0.8042, Peak Signal-to-Noise Ratio (PSNR) 20.65.00 color difference 9.26 , Root Mean Square Error (RMSE) 0.11 and Naturalness Image Quality Evaluator (NIQE) 3.94. Although in the third robustness test, PDR Net-Modified had difficulty in image restoration because the characteristics of the dataset were very different from the training data, PDR-Net Modified was still superior in the first and second robustness tests.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andrew Theodore Tjondrowidjojo
Abstrak :
Kabut merupakan fenomena atmosfer di mana asap, debu dan partikel kering lainnya berada di atmosfer. Kabut ini tentunya dapat memunculkan efek blur dan buram pada citra sehingga dapat mengurangi informasi yang terkandung di dalamnya. Hal ini dapat menyebabkan penurunan performa dari permasalahan pembelajaran mesin, seperti identifikasi dan klasifikasi. Image dehazing merupakan suatu proses yang bertujuan untuk memulihkan gambar yang jelas dari gambar yang rusak oleh kabut atau asap. Terdapat berbagai metode image dehazing yang telah dikembangkan, baik yang berbasiskan pixel intensity dan deep learning. Salah satu metode deep learning yang telah dikembangkan sebelumnya untuk image dehazing adalah Mod PDR-Net. Pada penelitian ini, penulis mengajukan suatu deep network untuk image dehazing baru dengan menggunakan Mod PDR-Net di dalam suatu Conditional Generative Adversarial Network. Data yang digunakan dalam penelitian ini adalah dataset standar citra berkabut luar ruangan. Untuk mengetahui kualitas dari hasil image dehazing yang didapat, penulis membandingkan hasil metode usulan dengan Mod PDR-Net original dan didapatkan bahwa metode usulan memiliki hasil yang lebih baik dibandingkan dengan Mod PDR-Net berdasarkan metrik yang digunakan, yaitu SSIM, RMSE, Delta E, dan BRISQUE dengan nilai berturut-turut sebesar 0.785, 0.109, 9.750. dan 28.375. ......Haze is an atmospheric phenomenon where smoke, dust, and other dry particles are present in the atmosphere. Haze can create blurring effects in captured images, resulting in reduced information contained in the image. This can lead to performance degradation from machine learning problems, such as identification and classification. Image dehazing is a process that aims to recover a clear image from a hazy image. Various image dehazing methods have been developed, both based on the pixel intensity and deep learning. One of the deep learning methods that has been previously developed for image dehazing is Mod PDR-Net. In this study, the author proposes a deep network for image dehazing by using Mod PDR-Net in a Conditional Generative Adversarial Network. The data used in this study consists of a standard dataset of outdoor hazy images. In order to determine the quality of the obtained image dehazing results, the author compared the result of the proposed method with the original Mod PDR-Net and found that the proposed method has better results than the Mod PDR-Net based on the metric used, namely SSIM, RMSE, !E, and BRISQUE with values respectively 0.785, 0.109, 9.750. and 28.375.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aziz Fikri Hudaya
Abstrak :
Citra berkabut terjadi jika cahaya yang diterima oleh media optik dihamburkan dengan media yang keruh, seperti asap dan tetesan air. Citra berkabut dapat direstorasi menjadi citra tanpa kabut dengan proses image dehazing. Salah satu metode untuk melakukan image dehazing adalah statistical prior. Statistical prior digunakan ketika informasi yang diketahui hanyalah citra berkabut, untuk mengestimasi parameter yang tidak diketahui, seperti airlight dan transmisi. Pada penelitian ini penulis menggunakan dua metode statistical prior, yaitu Dark Channel Prior dan Two Peak Channel Prior. Untuk mendapatkan hasil terbaik, penulis melakukan optimasi parameter pada kedua metode yang digunakan. Untuk mendapatkan kualitas hasil image dehazing terbaik, penulis merancang sebuah kerangka kerja (framework usulan dari modifikasi metode Dark Channel Prior yang melibatkan pemisahan daerah langit dan non-langit dan optimasi parameter. Performa metode diuji dengan menggunakan metrik root mean square error (RMSE) dan structural similarity index measure (SSIM). Didapatkan hasil dimana metode usulan mendapatkan hasil evaluasi terbaik, dengan RMSE sebesar 0.063 dan SSIM sebesar 0.942 Untuk dataset SOTS Outdoor. Sementara untuk dataset O-Haze, metode usulan mendapatkan hasil evaluasi terbaik juga dengan RMSE sebesar 0.147 dan SSIM sebesar 0.811. ......Hazy images occur when the light received by the optical device is scattered by turbid media such as smoke and water droplets. Hazy images can be restored to its clear version by the image dehazing process. It is possible to perform image dehazing using statistical priors. Statistical priors are used when the only known information is the hazy image itself, to estimate the unknown parameters. In this study, the author used two statistical priors, namely Dark Channel Prior and Two Peak Channel Prior. To obtain the best possible results, the author attempted to optimize the parameters of the used methods. Furthermore, to obtain the best possible quality of image dehazing results, the Author proposed a framework using a modification of the Dark Channel Prior method, which involved separating the sky and non-sky areas and parameter optimization. The method performance was evaluated using the root mean square error (RMSE) and structural similarity index measure (SSIM). The results obtained show that the proposed method is able to get the best evaluation results, with an RMSE of 0.063 and SSIM of 0.942 for SOTS Outdoor dataset. For the O-Haze dataset, the proposed method also gets the best evaluation results with an RMSE of 0.147 and an SSIM of 0.811.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library