Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Lalu Suhaimi
Abstrak :
ABSTRAK
Seng oksida (ZnO) telah diaplikasikan sebagai pemanas transparan. Namun, penelitian tentang mikrorod ZnO sebagai pemanas transparan belum dikembangkan. Pada penelitian ini dilakukan fabrikasi lapisan tipis mikrorod ZnO dengan metode chemical bath deposition. Material yang digunakan yaitu zinc nitrate tetrahydrate dan heksametilentetramine. Varibel pada penelitian ini yaitu konsentrasi larutan bibit sebesar 0.005, 0.010, 0.015, 0.025, dan 0.050 M serta perlakuan hidrotermal pada sampel 0.015 M. Karakterisasi mikrorod ZnO dilakukan dengan menggunakan XRD, FESEM, UV-Vis dan four point probe. Hasil penelitian menunjukkan peningkatan konsentrasi larutan mampu menurunkan celah pita energi, Eg mikrorod ZnO yaitu 3.60 menjadi 3.18 eV dan meningkatkan ukuran kristalit yaitu 41.541 hingga 95.076 nm. Diameter terbesar mikrorod ZnO yaitu 288.252 nm pada konsentrasi 0.015 M. Selain itu, peningkatan konsentrasi larutan menyebabkan transmitansi dan resistivitas turun yaitu masing-masing sebesar 72% menjadi 35% dan 0.787 x10-4 menjadi 0.013 x 10-4 Ωcm. Perlakuan hidrotermal pada sampel 0.015 M menyebabkan penurunan diameter dari 288. 252 menjadi 125.824 nm dan meningkatkan ukuran kristalit serta menurunkan Eg yaitu masing-masing 71.198 menjadi 165.696 nm dan 3.25 menjadi 3.19 eV. Selain itu, perlakuan hidrotermal menurunkan transmitansi dan resistivitas  yaitu masing-masing sebesar  50.5% menjadi 38% dan  1.126 x 10-4 menjadi 0.833 x 10-4 Ωcm. Perlakuan hidrotermal menghasilkan pemanas transparan yang optimum.


Zinc oxide (ZnO) has been applied as a transparent heater. However, research on ZnO microrod as transparent heaters has not been developed. In this study, the fabrication of microrod ZnO was carried out by using the chemical bath deposition method. The material used is zinc nitrate tetrahydrate and hexamethylentetramine. The variables in this study were the concentration of seed solutions of 0.005, 0.010, 0.015, 0.025, and 0.050 M and the hydrothermal treatment in the sample 0.015 M. The characterization of ZnO microrod was carried out using XRD, FESEM, UV-Vis and four point probes. The results showed an increase in solution concentration was able to reduce the energy band gap, Eg of ZnO microrod which is 3.60 to 3.18 eV and increase the size of the crystallite which is 41.541 to 95.076 nm. The largest diameter of ZnO microrod is 288.252 nm at a concentration of 0.015 M. In addition, an increase in the concentration of the solution causes transmittance and resistivity to decrease, from 72% to 35% and from 0.787 x10-4 to 0.013 x 10-4 Ωcm, respectively. The hydrothermal treatment of 0.015 M sample caused a decrease in diameter from 288. 252 to 125.824 nm and increased the size of the crystallite and lowered Eg, from 71.198 to 165.696 nm and from 3.25 to 3.19 eV, respectively. In addition, it has decreases transmittance and resistivity from 50.5% to 38% and from 1.126 x 10-4 to 0.833 x 10-4 Ωcm, respectively. The hydrothermal treatment produces optimum transparent heaters.

2019
T52368
UI - Tesis Membership  Universitas Indonesia Library
cover
Adlan Mizan
Abstrak :
ABSTRAK
Telah berhasil dilakukan sintesis semikonduktor Cu2ZnSnS4 CZTS sebagai absorber semikonduktor yang dilakukan dengan metode kimiawi menggunakan pelarut dan ligand etanolamine untuk memudahkan reaksi dengan sulfur. Deposisi CZTS yang dipilih adalah menggunakan metode dip-coating. Metode ini dilakukan diatas substrat kaca soda lime glass yang kemudian di drying pada 200 C dan annealing pada 550 C dengan atmosfir argon. Kristalinitas CZTS hasil uji X-ray diffraction yang tinggi serta hasil energy dispersive spectroscopy yang sesuai dengan literatur. Celah pita yang didapatkan pada CZTS adalah 1,36 eV.Lapis CZTS kemudian dilapisi dengan Cadmium Sulfide CdS dengan metode chemical bath deposition menggunakan perbedaan konsentrasi [S]:[Cd] dan temperatur deposisi yang berbeda. Lapisan CdS diuji pola difraksinya menggunakan X-ray diffraction dan UV-Vis spectroscopy. Kristalinitas meningkat pada setiap penambahan konsentrasi [S]:[Cd] dengan pola diffraksi yang paling mirip dengan referensi adalah perbandingan 5 dan semua sampel memiliki rata-rata celah pita 2,26 eV. Meningkatnya temperatur pada CdS dapat merubah antarmuka antara CZTS dengan CdS dimana pada temperatur 70 C menunjukan interface yang paling baik dengan ditemukannya adanya Antarfasa antara CZTS dan CdS. Hasil optik dari CZTS/CdS menunjukan perbandingan konsentrasi [S]:[Cd]= 5 dapat meningkatkan performa absorbsi dari CZTS. Antarmuka pada temperatur selain 90 C diduga dapat meningkatkan sifat reflektansi dari lapisan CdS yang menurunkan transmitansi
ABSTRACT
The semiconductor synthesis of Cu2ZnSnS4 CZTS has been successfully carried as a semiconductor absorber by chemical method using solvents and ethanolamine ligand. The dip coating method has been selected for CZTS deposition. This method carried out on a soda lime glass substrate, then dried at 200 C and annealed at 550 C with an argon atmosphere. X ray diffraction test and electron dispersive spectroscopy analysis confirm the crystallinity and chemcial composition of CZTS. The bandgap obtained in CZTS is 1.36 eV. The CZTS layer is then coated with CdS by chemical bath deposition method using different concentration S Cd and different deposition temperature. The CdS layer diffraction pattern and optical properties are checked using X ray diffraction and UV Vis spectroscopy. It was shown that crystallinity increased at each addition of S Cd concentration with the diffraction patterns confirm that CdS are present at the ratio of 5 and all samples had an average bandgap 2.26 eV. Increased temperatures in CdS can alter the interface between CZTS and CdS where at 70 C it shows the best interface with the discovery of an interphase between CZTS and CdS. Optical results from CZTS CdS showed a concentration ratio of 5 to improve the absorption performance of CZTS. Interfaces at temperatures other than 90 C are thought to increase the reflectance properties of the CdS layer that inhibit the transmittance properties of CdS.
2018
T50930
UI - Tesis Membership  Universitas Indonesia Library
cover
Yoyok Dwi Setyo Pambudi
Abstrak :
ABSTRAK
Logam transisi oksida (MxOy,M = Co, Fe, Cu, Zn) menarik untuk dijadikan material baru sebagai anoda baterai ion lithium karena secara umum mempunyai kapasitas spesifik lebih besar dari material grafit. Diantara logam logam transisi tersebut ZnO mempunyai kelebihan karena mempunyai kapasitas teoritis yang yang tinggi sekitar 978 mAh/g atau setara tiga kali dari grafit seperti yang dipakai pada baterai ion lithium dewasa ini. Kelebihan lain dari ZnO adalah tidak beracun, ketersediaannya banyak dan murah dalam preparasi. Selain itu ZnO mempunyai band gap yang lebar (3,37 eV pada suhu kamar), mobilitas elektron tinggi (100 cm2/Vs) dan ikatan energi yang besar (60 meV) sehingga yang telah banyak digunakan di banyak aplikasi seperti semikonduktor, bahan konduktor transparan, biosensor dan bahan anoda dari baterai lithium-ion. Secara khusus, struktur nano ZnO telah menarik banyak perhatian karena sifat unik dan kemungkinan penerapannya di bidang yang luas. Tetapi penerapan material ZnO sebagai anoda baterai ion lithium juga mempunyai kelemahan karena terjadinya ekspansi volume selama proses charge dan discharge yang akan menyebabkan kerusakan material anoda tersebut dan berakibat pada turunnya kapasitas baterai. Maka dilakukan pengendalian morfologi terhadap struktur ZnO dalam bentuk microrods yang ditumbuhkan pada substrat tembaga (Cu foils) dengan menggunakan metode kimia basah atau chemical bath deposition (CBD) pada suhu rendah. Parameter yang diamati adalah keseragaman, densitas dan diameter ZnO microrods hingga didapatkan kondisi optimum untuk pertumbuhan ZnO. Efek annealing temperatur pada pertumbuhan ZnO microrods dan kristalisasi selanjutnya diteliti. Ukuran, keselarasan dan keseragaman ZnO microrods dievaluasi dengan pemindaian mikroskop elektron (SEM dan HRSEM), sedangkan untuk analisis struktural dilakukan dengan teknik X-ray difraksi (XRD). Hasil penelitian menunjukkan bahwa suhu anil berpengaruh secara signifikan terhadap pertumbuhan microrods ZnO. Dengan melalui sejumlah pengujian terhadap struktur dan morfologi di dapatkan bahwa parameter eksperimental yang baik dicapai dengan menggunakan 3 (tiga) lapisan benih, anil pada suhu 150oC dalam waktu 10 menit anil, memberikan diameter rata-rata 218 nm, ukuran kristal 50,16 nm dan densitas 5,05 microrods μm2. Ukuran kristalit terbesar (65,34 nm) diperoleh pada suhu anil pada suhu 100oC dan 10 menit waktu anil. Citra SEM dan HRSEM pada semua sampel yang diuji menunjukkan bahwa ZnO microrods berhasil ditumbuhkan pada substat lembaran tembaga dengan diameter 200 900 nm. Hasil CV memperlihatkan bahwa kapasitas spesifik tertinggi sebesar didapatkan oleh sampel ZnO150 dengan nilai kapasitas spesifik sebesar 811 mAh/gr untuk discharge dan 773 mAh/gr untuk charge pada pengisian densitas arus 0.5 A/g Sedangkan kapasitas spesifik terendah didapat pada sampel ZnO50 dengan nilai kapasitas spesifik sebesar 572 mAh/gr untuk discharge dan 562 untuk charge. Sedangkan untuk ketahanan siklus didapatkan oleh sampel ZnO100 dengan kapasitas retensi 94% pada siklus ke 80 dan ZnO 150 dengan kapasitas retensi 82 %. Dari pengujian rate capabilities, baterai ZnO memiliki kemampuan discharge dan charge dari 0,1 C hingga 2C. Hal ini menunjukkan bahwa telah tercapai tujuan penelitian yaitu sebagai pengembangan awal anoda ZnO microrods sebagai anoda baterai ion lithium dengan kapasitas spesifik yang tinggi.
ABSTRACT
Transition-metal oxides (MxOy, M = Co, Fe, Cu, Zn) are such an attractive new materials for lithium ion battery anodes, as they generally have bigger specific capacity than graphite materials. Among the transition metals, ZnO have an advantage of their high theoretical capacity for about 978 mAh/g which are three times the equivalent of graphite used in today's lithium ion batteries. Another advantage of ZnO is non-toxic. Its availability is abundant and cheap in preparation. In addition, ZnO as a semiconductor material has a wide band gap (3.37 eV at room temperature), high electron mobility (100 cm2/Vs) and large energy bonds (60 meV) so that it has been widely used in many applications, including transparent conductors, biosensors and anode materials from lithium-ion batteries. In particular, the ZnO nanostructure has attracted much attention due to its unique nature and its possible application in a wide field. The various nanostructures of ZnO have been synthesized using different approaches. In this work, the liquid chemical deposition facile (CBD) of ZnO microrods on copper (Cu) foils was studied. During synthesis, we control the uniformity, density and diameter of ZnO microrods to determine the optimum conditions. The effects of temperature annealing on the growth of ZnO microrods and crystallization were further investigated. The size, alignment and uniformity of ZnO microrods were evaluated by scanning electron microscopy (SEM), while for structural analysis performed by XRD technique. The results showed that the annealing temperature significantly affected the growth of ZnO microrods. We found excellent experimental parameters achieved by using 3 (three) seed layers, annealing at 150 ° C within 10 minutes annealing, giving an average diameter of 218 nm, a crystal size of 53.29 nm and a density of 5.05 microrods / μm2. The largest crystal size ( 65.34 nm) was obtained at annealing temperatures at 100 ° C and 10 minutes anneal time. The SEM and HRSEM images in all samples tested showed that ZnO microrods were successfully grown on copper sheet substrates with diameters of 200-900 nm. The CV results show that the highest specific capacity is obtained by the ZnO150 sample with a specific capacity value of 811 mAh/gr for discharge and 773 mAh/gr for charging the current density of 0.5 A/g. While the lowest specific capacity was obtained in the ZnO50 sample with a specific capacity value of 572 mAh/gr for discharge and 562 for charge. While for cycle resistance obtained by the sample ZnO100
2018
D2579
UI - Disertasi Membership  Universitas Indonesia Library
cover
Aldo Perwira Agung
Abstrak :
ABSTRACT
Krisis energi dunia dan tingginya harga sumber energi fosil di Eropa dan negara barat menyebabkan innovasi dalam pemanfaatan energi alternatif yang tidak menimbulkan polusi udara CO2 maupun radio aktif. Sehingga diperlukan sumber energi baru, salah satunya adalah solar sel. CdS merupakan salah satu komponen penting sel surya lapis tipis. Pada pembuatan CdS sebagai lapisan buffer sel surya lapis tipis berbasis CZTS dilakukan dengan metode chemical bath deposition (CBD). CdS dideposisikan pada kaca terlapis CZTS dengan variable yang berbeda untuk mendapatkan kondisi deposisi yang optimal. Deposisi CdS telah berhasil dilakukan, dan temperatur optimalnya adalah 90°C. Temperatur dibawah 90°C akan menghasilkan lapisan antar muka yang dapat mengurangi sifat transmitansi lapisan CdS. Konsentrasi optimal pada [S]:[Cd] = 5, karena memiliki nilai transmitansi terbaik.
ABSTRACT
The world energy crisis and the high price of fossil energy sources in Europe and the western countries have led to innovation in the use of alternative energy that does not cause CO2 or radioactive air pollution. So that new energy sources are needed, one of which is solar cells. CdS is one of the important components of thin film solar cells. In making CdS as CZTS thin layer solar cell buffer layer was carried out by chemical bath deposition (CBD) method. CdS is positioned on CZTS coated glass with different variables to obtain optimal deposition conditions. CdS deposition has been successfully carried out, and the optimal temperature is 90°C. Temperatures below 90°C will produce an interface layer that can reduce the transmittance properties of the CdS layer. The optimal concentration at [S]: [Cd]=5, because it has the best transmittance value.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panjaitan, Sadra Partogi
Abstrak :
ZnO nanorod telah berhasil disintesis menggunakan prekursor HMTA dan seng nitrat tetrahidrat melalui metode chemical bath deposition (CBD) yang sebelumnya telah melalui proses pembibitan dengan menggunakan larutan natrium hidroksida (NaOH) dan seng asetat dihidrat (Zn(CH3COOH)2.2H2O). Perlakuan yang diberikan adalah variasi konsentrasi larutan CBD, yaitu 0,025 M; 0,0375M; 0,05M; dan 0,075M dan variasi durasi waktu proses CBD, yaitu 2 jam, 3 jam, 4 jam, dan 6 jam dengan tujuan untuk menganalisa pengaruh kedua hal tersebut terhadap hasil mikrostruktur ZnO, diameter ZnO nanorod, serta kristalinitas yang terbentuk. Hasil yang didapatkan kemudian diaplikasikan untuk fabrikasi sel surya berbasis perovskite dengan melihat performa efisiensi konversi (η) dari PSC yang telah difabrikasi. Metode karakterisasi material yang digunakan adalah X-ray Diffraction (XRD), dan Scanning Electron Microscope (SEM). Pengujian performa dar PSC yang telah difabrikasi menggunakan Semiconductor Parameter Analyzer dengan menganalisis kurva arus dan tegangan (I-V). Hasil penelitan menunjukkan bahwa dengan naiknya konsentrasi prekursor yang digunakan, maka akan terjadi kenaikan diameter ukuran butir ZnO nanorod, kristalinitas serta intensitas difraksi ZnO yang dihasilkan. Seiring naiknya durasi waktu proses hidrotermal pada kondisi konsentrasi yang sama juga menunjukkan adanya peningkatan diameter ZnO nanorod yang dihasilkan, peningkatan panjang dari Zno nanorod serta kenaikan kristalinitas dari ZnO. Efisiensi PCE yang paling optimal didapatkan pada kondisi sampel dengan konsentrasi prekursor 0,0375 M dan dengan durasi 3 jam, efisiensi yang didapatkan sebesar 0,027%.
The characteristics of ZnO grown via chemical bath deposition on an FTO glass substrate at different reaction time and precursors concentration has been examined. The seed of ZnO was firstly spin coated at 500 rpm for 5 seconds onto an FTO glass substrate and then at 3000 rpm for another 30 seconds. The coated substrate was then heated at 90 °C to remove the solvent. The growth of ZnO was performed via chemical bath deposition at various precursors concentration and reaction time. The morphology of the obtained ZnO nanorods were characterized using field-emission electron microscope (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDX) to reveal the morphology and elemental composition of the nanorod, whereas X-ray diffraction (XRD) was used to examine the crystal structure. The results showed that the ZnO products have nanorod structure and sizes for each concentration. The results of this morphology were supported by the results from XRD. XRD patterns revealed that the formation of nanostructure of ZnO has been obtained at reaction time of 2 hour. The performance test of a fabricated PSC using the Semiconductor Parameter Analyzer by analyzing the current and voltage curves (I-V). The results show that with the increase in the concentration of the precursors used, there will be an increasing the diameter of the ZnO nanorod grain size, the crystallinity and intensity of the ZnO nanorod. As the duration of the hydrothermal process increases in the same concentration conditions also shows an increasing of ZnO nanorod diameter, an increase in the length of Zno nanorod and an increase in the crystallinity of ZnO. The highest PCE efficiency was obtained in the condition of the sample with precursor concentration of 0.0375 M and with a duration of 3 hours., The efficiency obtained was 0.027%.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anuar Kassim
Abstrak :
Lead selenide thin films were prepared by chemical bath deposition method using aqueous of lead nitrate, sodium selenate and sodium tartrate. The influence of bath temperature towards the properties of the thin films was studied. The films were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectrophotometer. The XRD results confirmed the polycrystalline cubic structure of PbSe films. The intensity of major peak at 2Θ= 25.1° which belonged to (111) plane of PbSe, increased with bath temperature from 40 to 80 °C. The SEM micrographs showed that the most homogeneous surface and larger grain sizes could be seen for the films deposited at 80 °C as compared with other bath temperatures.
Direktorat Riset dan Pengabdian Masyarakat UI;Universiti Putra Malaysia. Faculty of Sciences;Universiti Putra Malaysia. Faculty of Sciences, 2011
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Amalia Sholehah
Abstrak :
Zinc oxide (ZnO) nanorods have been considered as a potential semiconductor oxide material for the application of dye-sensitized solar cells (DSSC). Various experiments have been conducted to improve its nanostructural characteristics and functional properties in order to make it well suited for enhancing DSSC’ performance. Inspired by such studies, the ZnO nanorods array was grown on indium tin oxide (InSn2O3, ITO) substrate in the present work. For this purpose, a seed solution was prepared at low temperature (0oC) using zinc nitrate tetrahydrate and hexamethylenetetramine. The ZnO seed layers were deposited onto ITO glass using a spin-coating technique and further annealed at two different temperatures, 200 and 400 oC. The seeding was also varied between one, three and five layers, prior to the growing process using the chemical bath deposition method (CBD). The results showed that the annealing temperatures significantly influenced the ZnO nanorods’ growth. The optimal condition was achieved by using three seed layers annealed at 200oC, providing an average diameter of 157.58 nm, the biggest crystallite size (up to 59.63 nm), and a band-gap energy (Eg) of 3.27 eV. Based on the obtained properties, the growth of ZnO nanorods on ITO substrate in this work has the potential to be used for the application of dye-sensitized solar cells.
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:4 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Gerry Resmi Liyana
Abstrak :
Nanorods ZnO telah menarik minat banyak peneliti karena memiliki karakteristik unik yang berpotensi untuk diaplikasikan pada berbagai divais seperti light-emitting diode (LED), dye-sensitized solar cells (DSSC), dan field-effect transistor. Pengaturan parameter-parameter sintesis untuk mendapatkan karakteristik nanorods ZnO yang sesuai dengan aplikasi-aplikasi strategis tersebut telah dilakukan oleh banyak peneliti. Namun, belum banyak penelitian yang berkaitan dengan karakteristik nanorods ZnO yang sesuai untuk aplikasi pemanasan transparan yang menggabungkan performa panas dan transparansi optik yang tinggi. Oleh karena itu, penelitian ini bertujuan untuk menyelidiki pengaruh variasi waktu pertumbuhan dan temperatur larutan bibit pada sifat optik dan elektrotermal lapisan tipis nanorods ZnO untuk aplikasi pemanas transparan. Untuk keperluan investigasi, larutan bibit disiapkan pada suhu 0, 30, dan 60 ℃ selama 1 jam dengan menggunakan seng nitrat tetrahidrat dan hexamethylenetetramine sebagai prekursor. Lapisan bibit tersebut kemudian diteteskan ke atas substrat kaca ITO dan didiamkan selama 10 menit. Selanjutnya, kaca ITO yang telah ditetesi larutan bibit tersebut diputar menggunakan spin coater dengan kecepatan 2000 rpm selama 20 detik lalu dianil pada temperatur 200℃ selama 5 menit. Setelah proses spin coating, lapisan nanorods ZnO ditumbuhkan menggunakan metode chemical bath deposition (CBD) pada suhu 90 ℃ dengan variasi waktu pertumbuhan yang berbeda (3, 4, dan 5 jam). Sampel yang telah disintesis dikarakterisasi menggunakan X-Ray Diffractometer (XRD), scanning electron microscope (SEM), ultraviolet-visible (UV-Vis) spectrophotometry. Untuk melihat hubungan antara struktur dan morfologi sampel dengan karakterisik optik dan elektrotermalnya, resistivitas listrik diukur menggunakan four-point probe dan performa panas menggunakan termokopel. Hasil penelitian menunjukkan bahwa kinerja pemanas transparan optimal yang menggabungkan transmitansi tinggi dan resistivitas rendah ditemukan dalam sampel yang disiapkan dengan temperatur larutan bibit 30°C dan waktu pertumbuhan 3 jam dengan resistivitas sekitar 0,882×10−4 ohm.cm dan transmitansi sebesar 60,01%. Selain itu, nanorods ZnO dengan waktu pertumbuhan yang lebih lama, kristalinitas yang lebih baik, cakupan substrat yang baik dengan ukuran diameter yang seragam menunjukkan suhu keadaan tunak (steady-state temperature) dan laju pemanasan/pendinginan yang tinggi. Namun, transparansi optiknya menurun secara bertahap dengan pertambahan waktu tumbuh yang diduga sebagai konsekuensi dari peningkatan cakupan nanorods ZnO pada substrat
ZnO nanorods have been attracting much interest of researchers owing to their unique properties and extensive potential for various applications including light-emitting diode, dye-sensitized solar cells, and field-effect transistor. Controlling synthesis parameters to obtain the desired characteristics of ZnO nanorods for those strategic applications has been done by many investigators. However, there has not been much research related to the suitable characteristics of ZnO nanorods required for a transparent heating application combining high thermal performance and optical transparency. Therefore, this study was aimed at investigating the effect of different growth time and seeds solution temperature on the optical and electrothermal properties of ZnO nanorods thin films. For investigation purposes, the seed solutions were initially prepared at the temperature of 0, 30, and 60℃ for 1 hour by using zinc nitrate tetrahydrate and hexamethylenetetramine as precursors. The ZnO seed layers were subsequently deposited onto ITO glass substrates by spin coating technique before the chemical bath deposition (CBD) growth at temperature of 90℃ for three different growth times (3, 4, and 5 hours). The synthesized ZnO nanorods were characterized by field-emission scanning electron microscopy, x-ray diffraction, and ultraviolet-visible spectrophotometry. To investigate the relationship between the structural and morphological characteristics of the synthesized ZnO nanorods with its electrothermal properties, we measured electrical resistivity using the Four Point Probe and heat performance using thermocouples. The results showed that optimum transparent heater performance combining high transmittance and low resistivity was found in samples prepared with seeds solution temperature of 30°C and growth time of 3 hours with resistivity of 0.882×10−4 ohm.cm and transmittance of 60.01%. In addition, the films for longer growth time with better crystallinity, good substrate coverage, and uniformity in their size exhibited a higher steady-state temperature with higher heating/cooling rate. However, its optical transparency decreased gradually with the prolongation of the growth time, which was expected as a consequence of the increase in ZnO nanorods coverage on the substrates.
Depok: Fakultas Teknik Universitas Indonesia, 2019
T55098
UI - Tesis Membership  Universitas Indonesia Library
cover
Amalia Sholehah
Abstrak :
Among semiconductors, zinc oxide (ZnO) has received great attention due to its wide band-gap and high electron mobility, resulting in various strategic applications. Controlling the physical properties of ZnO is therefore a critical issue in the fabrication of related electronic and optical devices. In this study, ZnO nanorods layers were grown on an ITO glass substrate via chemical bath deposition at low temperature. Prior to the growing process, the layers were deposited using a spin-coating technique. The seeding solution was made by dissolving zinc nitrate tetrahydrate and hexamethylene tetraamine in cold water (0oC) for an hour using a cooler bath. The as-synthesized ZnOs were further subjected to different post-hydrothermal treatment series at a temperature of 150oC for three hours at atmospheric pressure and at 100°C for one hour under one bar of nitrogen gas (N2) pressure. The characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and UV-Vis spectroscopy. The SEM results showed that the ZnO nanorods were grown as a vertically aligned hexagonal structure, while the XRD patterns showed a high intensity at the (002) plane. On the basis of investigation, it was found that under post-hydrothermal treatment at 150oC for three hours with atmospheric pressure, the synthesis procedure resulted in nanostructures in the form of ZnO rods. Meanwhile, post-hydrothermal treatment at 100°C for one hour under one bar of nitrogen gas (N2) produced ZnO rods and tubes. In general, the post-hydrothermal process provided a high degree of crystallinity. The optimum ZnO layer was obtained after post-hydrothermal treatment at 150oC for three hours at atmospheric pressure, with a crystallite size and band-gap energy of ~18 nm and 3.20 eV, respectively.
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:4 (2017)
Artikel Jurnal  Universitas Indonesia Library