Ditemukan 4 dokumen yang sesuai dengan query
Rohayu Stin
Abstrak :
Graf prisma adalah graf yang bersesuaiandengan kerangkabangun ruangprisma. Hanya graf prismaberarahsiklik dengan pola tertentu yang diperhatikandalam penelitian ini. Graf prismaberarahsiklik dinotasikan 𝑌𝑚(𝑚≥3),di mana 𝑚adalah setengah jumlah simpul,dan memiliki 2𝑚 simpul dan3𝑚busur. Sebuah graf dapat direpresentasikanmenggunakansebuah matriks. Ada beberapa jenis matriks yang biasanya digunakan dalam merepresentasikan graf. Diantaranya adalah matriks adjacency, anti-adjacency, dan Laplacianyang dibahas dalam penelitian ini. Polinomial karakteristik dari matriks adjacency, matriks anti-adjacency, dan matriks Laplaciandari graf prisma berarah siklik 𝑌𝑚diperoleh beserta nilai-nilaieigen real dan kompleksnya. Metode yang digunakan untuk membuktikan hasil-hasil penelitian iniadalah operasi baris matriks dan faktorisasi. Adapununtukpolinomial karakteristik dari matriks anti-adjacency𝑌𝑚, hasilnya dibuktikan dengan mengamati subgraf terinduksi siklik dan asiklik dari 𝑌𝑚berdasarkan sebuah teorema yang ditemukan dalam penelitian sebelumnya.
A prism graph is a graph which corresponds to the skeleton of a prism. Only directed cyclic prism graphs with certain pattern are considered in this research. The directed cyclic prism graph is denoted 𝑌𝑚(m≥3),where 𝑚is half the number of vertices,and has 2𝑚vertices and 3𝑚edges.Agraph can be represented by usinga matrix. There are several types of matrices that are usually used in representing a graph. Among them aretheadjacency, anti-adjacency, and Laplacianmatriceswhich are discussedinthis research. The characteristic polynomialsof theadjacency matrix,theanti-adjacency matrix, and the Laplacian matrix of directed cyclic prism graph 𝑌𝑚are obtainedas well as their real and complex eigenvalues. The methods used toprovethe results are matrix row operations and factorizations.As for the characteristic polynomial of the anti-adjacency matrix of 𝑌𝑚, the results are proved byobserving the both cyclic and acyclic induced subgraphs of 𝑌𝑚according to a theorem invented in a previous research
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Rizky Putra Okfradifa
Abstrak :
Graf berarah G didefinisikan sebagai pasangan terurut dari himpunan (V,E) yang ditulis dengan notasi G=(V,E) dimana V merupakan himpunan berhingga tak kosong yang disebut simpul, dan E adalah himpunan pasangan terurut anggota dari V yang disebut busur. Graf berarah unisiklik adalah graf berarah yang memuat tepat satu subgraf lingkaran. Graf helm berarah unisiklik Hn adalah graf yang diperoleh dari graf roda berarah Wn dengan menambahkan 1 pendant berarah pada tiap simpul lingkaran graf roda. Suatu graf berarah dapat direpresentasikan dalam beberapa bentuk matriks, salah satunya adalah matriks antiketetanggaan. Matriks antiketetanggaan adalah suatu matriks yang setiap entrinya merepresentasikan ada atau tidaknya busur berarah dari suatu simpul kesimpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiketetanggaan graf helm berarah unisiklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiketetanggaan diperoleh dengan menjumlahkan nilai-nilai determinan matriks antiketetanggaan dari semua subgraf terinduksi siklik dan asiklik. Nilai-nilai eigen dari matriks antiketetanggaan dari graf helm berarah unisiklik diperoleh dengan mencari akar-akar dari polinomial karakteristik dengan faktorisasi polinomial
A directed Graph G is defined as ordered pairs from set (V,E) which is represented by notation G=(V,E) where V is a finite nonempty set of vertices and E is a set of ordered pairs of elements of V called edges. A directed unicyclic graph is a directed graph that has only one directed cycle subgraph. A directed unicyclic helm graph Hn is obtained from a directed wheel graph Wn by adjoining a directed pendant edge at each vertex of the cycle. A directed graph can be represented into several matrix representations, one of them is the antiadjacency matrix. The antiadjacency matrix is a matrix in which the entries represent whether there is a directed edge from one vertex to another. This paper discusses the characteristic polynomial and eigenvalues of the antiadjacency matrix of the unicyclic helm graph. The general form of the coefficients of the characteristic polynomial that obtained by adding all of the determinants of antiadjacency matrix from each induced acyclic and cyclic subgraphs. The eigenvalues of the antiadjacency matrix of the directed unicyclic helm graph obtained by factorization its characteristic polynomial.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Bayu Hutama Aji
Abstrak :
Unknown.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nanda Anzana
Abstrak :
Matriks antiadjacency dan adjacency adalah contoh matriks yang merepresentasikan suatu graf berarah. Entri-entri dari matriks antiadjacency dan adjacency dari suatu graf berarah merepresentasikan ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiadjacency dan adjacency graf friendship berarah siklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiadjacency didapatkan dengan menjumlahkan determinan matriks antiadjacency dari semua subgraf terinduksi baik yang siklik maupun asiklik. Sedangkan bentuk umum dari koefisien-koefisien polinomial karaktersitik dari matriks adjacency didapatkan dengan menjumlahkan nilai determinan matriks adjacency subgraf terinduksi yang siklik saja. Nilai eigen dari matriks antiadjacency dan adjacency dapat berupa bilangan riil dan bilangan kompleks. Nilai eigen diperoleh dengan metode faktorisasi dan subtitusi. Dari hasil penelitian diperoleh bahwa koefisien polinomial karakteristik dan nilai eigen dari matriks antiadjacency dan adjacency dapat dinyatakan dalam fungsi yang bergantung pada jumlah segitiga pada graf friendship berarah siklik.
ABSTRACT
Antiadjacency and adjacency matrices are examples of matrices that represent a directed graph. The entries of the antiadjacency and adjacency matrices of a directed graph represent the presence or absence of directed arcs from one vertex to the others. This undergraduate thesis discusses the polynomial characteristics and eigenvalues of antiadjacency and adjacency matrices of directed cyclic friendship graphs. The general form of the coefficients of the characteristic polynomial of the antiadjacency matrix is obtained by adding the determinant of antiadjacency matrix of all the induced subgraphs, cyclic or acyclic. While the general form of the coefficients of the characteristic polynomial of the adjacency matrix is obtained by adding the determinant of adjacency matrix of the cyclic induced subgraphs. The eigenvalues of the antiadjacency and adjacency matrices can be real or complex numbers. The eigenvalues are obtained by the factorization and substitution methods. The result obtained shows that the characteristic polynomial coefficients and eigenvalues of the antiadjacency and adjacency matrices depend on the number of triangles in the cyclic directed friendship graph.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library