Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Putri Astianingrum
Abstrak :
Berdasarkan informasi dari WHO tahun 2008, bahwa di negeri China telah terjadi pencampuran melamin dalam bahan makanan yang mengandung susu seperti susu, biskuit, yogurt dan bahan makanan lainnya. Campuran melamin pada makanan dan minuman dapat mengakibatkan penyakit gagal ginjal, kanker bahkan kematian. Pencampuran melamin sebagai bahan pembuatan makanan dan minuman ditujukan untuk mengelabuhi badan pengecekan kualitas pangan, karena pada melamin terdapat kadar nitrogen 66% yang membuat bahan makanan dan minuman akan terlihat memiliki kandungan protein yang tinggi sehingga bahan makanan dan minuman tersebut dapat dikategorikan normal dan sesuai standar badan pengecekan kualitas pangan. Skripsi ini membahas tentang analisa dan identifikasi kadar melamin pada berbagai bahan makanan dan minuman yang mengandung susu dengan metode Hidden Markov Model (HMM). Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan identifikasi kadar melamin. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu setiap sampel data larutan akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter Hidden Markov Model (HMM). Hanya saja, pengolahan sinyal data pada proses identifikasi mengacu pada database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektor-vektor data dengan proses ektraksi, yang kemudian dicari suatu nilai centroid yang presisi dengan teknik Vector Quantization (VQ) dan kemudian diproses kedalam Hidden Markov Model (HMM) untuk menentukan nilai-nilai parameter yang dibutuhkan. Berdasarkan parameterparameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi jumlah data training dan ukuran codebook. Pada perancangan sistem ini, jumlah database yang optimal dengan menggunakan jumlah data training sebanyak 7 (tujuh) buah dan untuk ukuran codebook yang optimal adalah 128. Sementara akurasi sistem secara keseluruhan bervariasi antara 60% hingga 85%.
Based on information from WHO in 2008, many food industry in china added some melamine in milk, biscuit, yogurt, and other food. This can be very harmful because melamine in food can cause many disease for example kidney abortive function, cancer which can lead to the death. The purpose of adding melamine in the food is for cheating government food quality department, because the nitrogen content in melamine is 66%, so the food and drink will be seen contains high protein and categorize a normal food and can pass food quality check. This final project will dwell on analyze and identification of melamine content in foods using Hidden Markov Model (HMM). The system divide in two process, the making of data base and introducing of melamine content in foods or drink. This both process will be done in almost the same way, that is labialization process of each data, codebook making process, and Hidden Markov Model (HMM) parameter making process. The difference is data signal processing in introducing process will refer to database previously made. Its all start with the making of vectors using quantization vector technique (VQ) which will be use for determine the precision centroid value use for Hidden Markov Model (HMM) state for determine the needed parameters value. Based on this parameters, the maximum probability (Log of Probability) can be count and will show the output of percentage melamine content. From this layout system, system accuracy will be compare with the amount of data training variation and codebook size. At this layout system, the amount of optimum database will be get by using 7 (seven) data training and the optimum codebook size is 128. Meanwhile, the overall accuracy of the system will be variate from 65% up to 85%.
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51314
UI - Skripsi Open  Universitas Indonesia Library
cover
Sepritahara
Abstrak :
Sistem pengenalan wajah manusia merupakan salah satu bidang yang cukup berkembang dewasa ini, dimana aplikasi dapat diterapkan dalam bidang keamanan (security system) seperti ijin akses masuk ruangan, pengawasan lokasi (surveillance), maupun pencarian identitas individu pada database kepolisian. Tujuan Penulisan laporan tugas akhir ini adalah untuk membangun sebuah perangkat lunak pengenalan citra wajah manusia menggunakan metode Hidden Markov Models (HMM) dengan input database Pain Ekspression Subset dan database Hasil Foto Sendiri dengan memanfaatkan aplikasi GUI. Hasil pengujian sistem menunjukkan bahwa sistem pengenalan wajah (face recognition) membandingkan percobaan pengenalan sesuai dengan codebook (32, 64,128, 256) dan iterasi (5, 10). Sistem pengenalan wajah manusia menggunakan metode Hidden Markov Models (HMM) mencapai tingkat akurasi pengenalan sebesar 84,28%, dengan database 70 gambar yang terdiri dari 10 individu dengan masing-masing individu memiliki 7 variasi ekspresi yang berbeda.
ABSTRACT
Human face recognition system is one area that is developing now, where applications can be applied in the field of security (security system) such as permit access into the room, monitoring locations (surveillance), or search for individual identity in the police database. Purpose of this final report is to build a software image of human face recognition using Hidden Markov Models method (HMM) with input Pain Ekspression Subset database and Image itself database applications of GUI. Test results show that the system of face recognition systems trial comparing the introduction according to the codebook (32, 64.128, 256) and iteration (5, 10). Human face recognition system using Hidden Markov Models (HMM) reached the level of recognition accuracy of 84,28%, with 70 database that consists of 10 individuals with each individual has 7 variations of expressions.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1373
UI - Skripsi Open  Universitas Indonesia Library
cover
Evi Andriani
Abstrak :
Hidup di kota yang memiliki tingkat populasi dan polusi yang sangat tinggi akan berdampak negatif bagi kesehatan manusia, khususnya pada sistem pernafasan. Gangguan pada sistem pernafasan biasanya dapat terdeteksi melalui suara tarikan dan hembusan nafas dari penderita. Beberapa contoh gangguan tersebut adalah bronchial, cracle dan pleurisy. Skripsi ini membahas tentang perancangan sistem identifikasi penyakit pernafasan atau paru-paru dengan metode Hidden Markov Model (HMM). Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan penyakit paru-paru. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu tiap sampel akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter HMM. Hanya saja, pengolahan sinyal suara pada proses pengenalan mengacu database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektorvektor data dengan teknik kuantisasi vektor (VQ), yang kemudian dicari suatu nilai centroid yang presisi untuk dijadikan state HMM dalam menentukan nilainilai parameter yang dibutuhkan. Berdasarkan parameter-parameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi nilai durasi sampel, jumlah sampel, dan ukuran codebook. Pada penelitian ini, ukuran codebook yang optimal adalah 32, jumlah database yang optimal sebesar 10 (sepuluh) buah. Sementara persentase akurasi sistem secara keseluruhan bervariasi antara 70% hingga 93,33%.
Living in high poluted and populated city will give negative effects for our health especially for our respiratory system. The failure of respiratory system can be recognized by its sound during inhale and exhale phases called abnormal sound. It consist of bronchial, cracle, and pleural. This thesis discusses about lung disease recognition based on its abnormal sound using HMM method. The system consists of two main processes: database construction and diseases recognition. Both of this processes is done with almost exact ways. Each sample is processed through labelling, codebook construction, and HMM parameter construction. The difference is that in recognizing process, sound signal will be compared to database which has been made in prior. The whole process is started with data vectors production by using vector quantization (VQ) which can be used to analyze precisely centroid positions. The centroid will define HMM states and parameters. A Log of Probability (LoP) will be calculated from the parameter values. The largest value of LoP will be declared as an output of the system. Output of each samples are compared to obtain system accuracy based on variation of sample duration, sample amount, and codebook size. The optimum codebook size in this research is 32 and optimum sample amount in database is 10. Overall, accuracy of the system is variating from 70% up to 93,33%.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51125
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Rizky Hartaman
Abstrak :
Sampai saat ini, serangan jantung masih menjadi penyebab utama kematian dibanyak tempat di dunia. Salah satunya adalah kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini membahas tentang perancangan sistem pengenalan penyakit jantung berdasarkan suara detak jantung dengan metode HMM. Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan penyakit jantung. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu tiap sampel akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter HMM. Hanya saja, pengolahan sinyal suara pada proses pengenalan mengacu database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektorvektor data dengan teknik kuantisasi vektor (VQ), yang kemudian dicari suatu nilai centroid yang presisi untuk dijadikan state HMM dalam menentukan nilainilai parameter yang dibutuhkan. Berdasarkan parameter-parameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi nilai durasi sampel, jumlah sampel, dan ukuran codebook. Pada penelitian ini ukuran codebook yang optimal adalah 64, jumlah database yang optimal sebesar 10 (sepuluh) buah, dan rentang waktu sampel yang optimal adalah 0,7 detik. Sementara akurasi sistem secara keseluruhan bervariasi antara 60% hingga 85%.
Heart attack is still being the number one killer until now all over the world. A part of heart diseases which can be detected by murmur sound and will be explained here is valve anomaly. This thesis is talking about heart disease recognition based on its heart sound system design using HMM method. The system consists of two main processes: database construction and diseases recognition. Both of this processes is done with almost exact ways. Each samples will be processed through labelling, codebook construction, and HMM parameter making. The difference is that in recognizing process, sound signal will be compared to database which has been made before. The whole process is started with data vectors production by vector quantization (VQ) which can be used to analyze precise centroid positions. The centroid will define HMM states and parameters. A Log of Probability (LoP) will be calculated from the parameter values. The largest value of LoP will be declared as an output of the system. Output of each samples are compared to get system accuracy based on variation of sample duration, sample amount, and codebook size. The optimum codebook size in this research is 64, optimum sample amount in database is 10, and 0.7s sample duration. Overall, accuracy of the system is variating from 60% up to 85%.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51389
UI - Skripsi Open  Universitas Indonesia Library