Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Mohammad Nasikin
"Kendaraan bermesin diesel banyak digunakan di Indonesia. Kendaraan jenis ini mengeluarkan polutan terutama jelaga yang dapat direduksi dengan pemasangan katalitik konverter yang dapat mengkonversi jelaga menjadi CO2. Untuk mendapatkan katalitik konverter dengan ukuran yang optimum diperlukan model yang dapat mewakili profil konsentrasi jelaga, suhu konverter dan tekanan sepanjang konverter. Pada studi ini sebuah model untuk katalitik konveter pada kondisi adibatis menggunakan persamaan kinetika yang telah dipublikasikan sebelumnya. Penyelesaian terhadap model yang dikembangkan menggunakan program Polumath 5.X dan metode Runga Kutta.
Hasil simulasi menunjukkan bahwa terjadi kenaikan suhu sepanjang konverter dengan berkurangnya berat jelaga, sementara itu tekanan sepanjang konverter mengalami penurunan. Kenaikan berat jelaga di gas masuk konverter meningkatkan kebutuhan panjang konverter. Sebaliknya, kenaikan diameter katalis partikel tidak mempengaruhi berat jelaga sepanjang konverter dan suhu tetapi menghasilkan penurunan tekanan. Untuk mesin diesel 2500CC diperlukan sebuah katalitik konverter jenis packed bed berpenampang berbentuk elip dengan diagonal 14,5X7,5 cm dan diamater katalis 0,8 cm sepanjang 4,1cm.

Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas. Diesel vehicle is used in Indonesia in very big number. This vehicle exhausts pollutants especially diesel soot that can be reduces by using a catalytic converter to convert the soot to CO2. To obtain the optimal dimension of catalytic converter it is needed a model that can represent the profile of soot weight, temperature and pressure along the catalytic converter. In this study, a model is developed for packed bed catalytic converter in an adiabatic condition based on a kinetic study that has been reported previously. Calculation of developed equations in this model uses Polymath 5.X solver with Range Kutta Method.
The simulation result shows that temperature profile along catalytic converter increases with the decrease of soot weight, while pressure profile decreases. The increase of soot weight in entering gas increases the needed converter length. On the other hand, the increase of catalyst diameter does not affect to soot weight along converter and temperature profile, but results a less pressure drop. For 2.500 c diesel engine, packed bed catalytic converter with ellipse?s cross sectional of 14,5X7,5 cm diagonal and 0,8 cm catalyst particle diameter, needs 4,1 cm length.
"
Depok: Lembaga Penelitian Universitas Indonesia, 2004
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Junira Weni
"Tidak lama lagi Indonesia akan menerapkan peraturan Euro 2 tentang emisi gas buang Catalytic converter adalah salah satu metode yang digunakan untuk mengontrol emisi gas buang penyebab polusi terutama pada kendaraan. Gas buang ini terdiri dari gas-gas karbondioksida (CO2), karbon monoksida (CO), nitrogen oksida (NOx), hidrokarbon (HC) dan kandungan gas lainnya. Penelitian ini dilakukan untuk mengetahui distribusi tekanan dan kecepatan di dalam catalytic converter tipe honeycomb. Untuk itu dilakukan pengujian langsung dengan cara melewatkan udara ke catalytic converter tersebut dan kemudian diukur tekananan yang terjadi. Sebagai pembanding, dilakukan simulasi dengan menggunakan computational fluid dynamic (CFD). Untuk pembuatan model digunakan software MSC Nastran for Windows v.4.5, sedangkan untuk solver digunakan software Fluent UNS v.4.1. Dari hasil pengujian langsung dan simulasi dengan CFD, didapat hasil yang tidak terlalu jauh berbeda sehingga dapat dikatakan sudah tepat."
Depok: Fakultas Teknik, 2004
S37480
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Nasikin
"Persoalan pencemaran udara di kota-kota besar Indonesia. khususnya di wilayah DKI Jakarta, secara objektif telah banyak diungkapkan. Berbagai penelitian telah dilakukan dengan hasil yang saling mendukung polusi udara di Jakarta sudah sangat parah. Berdasarkan penelitian United Nation for Enviroment Program (UNEP), Oktober 1995, tingkat pencemaran udara di Jakarta sudah melebihi baku mutu lingkungan, dan menempatkan Jakarta sebagai kota terburuk ketiga, dalam hal polusi udara, setelah Meksiko dan Bangkok.
Kekotoran akan zat pencemar (polutan) tersebut sebagian besar merupakan sumbangan dari gas buang kendaraan bermotor. Bapedal telah mengidentifikasikan sumber-sumber utama polusi udara, dimana disebutkan bahwa 70% dari pencemaran udara Jakarta adalah emisi gas buang kendaraan bermotor dan 30% dari sumber lain. Dari 70% ini, lebih rinci lagi diidentifikasikan: 63% gas buang sepeda motor, 34% mobil pribadi dan sisanya kendaraan umum dan taksi. Data dari Bapedal juga menyebutkan bahwa sumbangan polusi udara di Jakarta: 73% NDx, 89% hidrokarbon, 100% timah hitam, dan 44% SPM berasal dan sektor transportasi.
Pemda DKI juga telah melakukan uji emisi terhadap kendaraan bermotor. Dari data Biro Lingkungan Hidup DKI menunjukkan kecenderungan yang semakin parah. Pada tahun I994/1995 tercatat bahwa 58% kendaraan yang diuji tidak memenuhi syarat BME. Angka ini kemudian naik menjadi 67% pada tahun 1995/1996, meskipun agak menurun pada tahun 1996/1997 menjadi 63%.
Berdasarkan penelitian lainnya didapatkan bahwa tingkat pencemaran udara di Bandung, Jakarta dan Surabaya, telah jauh melebihi ambang batas yang diperbolehkan Undang-Undang Lingkungan Hidup, masing-masing 2 kali, 10 kali dan 2 kali. Salah satu jenis polutan tersebut adalah NOx dengan kadar 0,5 ppm, sedangkan batas mutu yang diperbolehkan hanya sebesar 0,05 ppm. Zat pencemar lain seperti CO (dengan baku mutu 20 ppm). SO, dan hidrokarbon lain menunjukkan kecenderungan yang sama.
Akibat polusi udara, tingkat penderita asma di Jakarta jauh lebih tinggi dibanding kota lain yang kurang tercemar. Lebih dari 16% anak-anak di Jakarta terkena asma. Secara umum, dampak yang ditimbulkan akibat polusi udara antara lain adalah:
1. Peningkatan morbiditas.
Beberapa bahan pencemar dapat melemahkan sistem days tahan tubuh, sehingga memudahkan timbulnya berbagai jenis penyakit, khususnya penyakit infeksi.
2. Penyakit tersembunyi, tidak jelas, tidak spesifik, antara sakit dan tidak sakit, sehingga mengganggu pertumbuhan, perkembangan, serta umur.
3. Mengganggu fungsi fisiologis organ tubuh: paru-paru, syaraf, transpor oksigen ke seluruh jaringan serta kemampuan sensorik.
4. Kemunduran penampilan, aktivitas atlet, kemampuan motorik, aktivitas belajar."
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Amsterdam: Elseiver, 1997
629.252 8 CAT
Buku Teks  Universitas Indonesia Library
cover
Tresna Priyana Soemardi
"Simulasi CFD (Computational Fluid Dynamic) digunakan untuk mendapatkan perilaku aliran gas buang yang menuju katalis, hasil dari simulasi itu akan digunakan untuk mengoptimasi bentuk geometri diffuser inlet yang akan menghasilkan distribusi aliran yang lebih seragam pada katalis, dan simulasi CFD juga akan digunakan untuk menganalisis penurunan tekanan yang terjadi pada model.

Diffuser Optimation at Exhaust System with Catalytic Converter for 110 cc Mopet with Fluid Flow CFD Simulation. CFD simulation used to get behavior of exhaust gas through catalyst, this result will be used to optimize geometry form to perform uniform stream distribution to catalyst, and CFD Simulation will used to analyze backpressure that happened at the model."
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Konverter katalitik merupakan suatu alat untuk mereduksi emisi polutan yang dihasilkan oleh pembakaran kendaraan bermotor, yang aplikasinya sejauh ini di Indonesia belum ada. Oleh sebab itu pengenalan dan studi tentang alat ini sangat diperlukan guna mendorong aplikasinya, sehingga diharapkan dapat mengurangi emisi gas berbahaya terutama di daerah perkotaan. Penelitian ini bertujuan untuk mengembangkan model matematika dari konverter katalitik dimulai dari pendekatan model 1 dimensi dan 3 dimensi untuk dua fase terutama untuk memahami fenomena dinamis saat cold-start dimana emisi hidrokarbon terbesar (60-80%) terjadi pada saat permanasan tersebut. Pemahaman fenomena ini sangat panting untuk pengembangan disain konverter katalitik.
Secara garis besar penelitian ini telah berhasil memodelkan cold start konverter katalitik baik untuk satu dimensi maupun untuk 3 dimensi. Untuk penyelesaian numerik model 1 dimensi dapat diselesaikan dengan mudah dengan menggunakan metode kolokasi dan Runge Kutta Gill sehingga model 1 dimensi dapat disimulasikan. Untuk model 3 dimensi, dikarenakan menggunakan model kinetika reaksi yang lebih kompleks dan jumlah komponen yang terlibat dalam reaksi lebih banyak, sehingga membutuhkan software yang lebih canggih (Fluent) yang menggunakan pendekatan volume hingga. Penyelesaian dengan Fluent masih menghadapi kendala untuk kinetika reaksi yang kompleks tersebut sehingga memerlukan pengembangan sub-routine di luar Fluent yang disebut User Define Function (UDF) sehingga memerlukan waktu yang cukup lama untuk menyelesaikannya. Untuk 3 dimensi, sampai saat ini kami baru berhasil mensimulasikan cold model (tanpa reaksi).
Berdasarkan hasil simulasi model 1 dimensi pemahaman fenomena cold-start yang di dapat dijelaskan berikut:
1. Pada kondisi cold-start waktu yang diperlukan untuk mengkonversi CO hingga mendapatkan gas buang dengan konsentrasi CO = 0% adalah 92 detik. Sedangkan pada kondisi awal temperatur konverter katalitik 550 K, untuk mencapai konentrasi CO keluar dari konverter katalitik sebesar 0,0064% diperlukan waktu 28 detik.
2. Temperatur awal yang lebih tinggi memberikan kinerja konverter katalitik yang lebih baik dibandingkan kondisi cold-start, sehingga adanya pemanas sebelum mesin dinyalakan merupakan salah satu alternatif menarik dalam disain katalitik konverter."
Depok: Universitas Indonesia, 2001
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Anton Yuhadi
"Pada saat ini tingkat polusi di Indonesia dinilai sudah cukup tinggi, terutama pada kota-kota besar seperti Jakarta atau Surabaya. Polusi udara ini diakibatkan oleh polutan yang dihasilkan dari berbagai aktivltas manusia.
Kendaraan bermotor mempakan penyumbang polusi udara terbesar di Indonesia. Hal ini disebabkan oleh pembakaran yang kurang sempuma dari mesin kendaraan bermotor dan penyetelan mekanisme pembakaran yang salah. Salah satu cara yang dinilai paling efektif dalam mengurangi emisi gas buang kendaraan bermotor adalah penggunaan peralatan tambahan pada kendaraan contohnya Catalytic Converter. Dalam hal ini untuk mengoptimalkan kerja Catalytic Converter, maka salah satunya adalah merancang bentuk tabung laluan Catalytic Converter dengan dasar bentuk-bentuk yang sudah ada dan umum dipasaran, seperti bentuk silinder atau oval.
Tujuan dari penelitian ini adalah menganalisa aliran gas buang kendaraan bermotor di dalam Catalytic Converter, dengan beberapa bentuk design. Keuntungan dari penggunaan CFD adalah salah satu cara untuk menggambarkan distribusi aliran gas buang pada Catalytic Converter dan mengurangi biaya penelitian. Dan memperoleh berbagai informasi tentang properti aliran yang hampir sulit didapatkan pada eksperimen.
Simulasi ini menunjukkan rancangan yang lebih efisien dan lebih optimal dari rancangan yang lain. Parameter yang digunakan pada simulasi ini adalah kecepatan dan distribusi tekanan aliran gas buang di dalam Catalytic Converter. Disimpulkan bahwa rancangan dengan bentuk silinder lebih baik dari rancangan dengan bentuk oval.

The level of air polution in indonesia is high enough, particulary in big cities such Jakarta or Surabaya. Thats caused by the polutant that is produced by the activities of man kind.
Vehicies (Autornotives) are the biggest air polution contributors in indonesia. This is caused by the uncompieted combustion of engine vehicies and the setting of combustion's timing. The most effective way to reduce the engine's gas emision is by using additional equipment on engine that can reduce gas emision such as Catalytic Converten in this case, one of many way to optimize Cataiytic Converter is by designing the tube. The shapes ot the tube is taken from common shape of Catalytic Converten such as cylinden oval etc.
The purpose of this research is to analyze the tiow of the gas engine through inside of Catalytic Converten with different kind of shape. The benefit of CFD is another way to visualize the distribution of gas engine flow in Catalytic Converter and to reduce cost of research. And we can get information of fluid property that almost very difficult in real experiment.
This simulation shows which design is the most edicient and the most optimum then the other design. The parameter that is used in this simulation is velocity magnitude and the distribution of pressure of gas engine flow in Catalytic Converter in this simulation, the cylinder design is more efficient than the oval design.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37202
UI - Skripsi Membership  Universitas Indonesia Library
cover
"ABSTRAK
Tingkat polusi udara di Indonesia dinilai cukup tinggi. Tingginya tingkat poiusi udara ini diakibatkan oleh polutan yang dihasilkan dari aktivitas yang dilakukan manusia. Sebagian besar adalah aktivitas pembakaran.
Kendaraan bermotor merupakan penyumbang polusi udara terbesar. Hal ini disebabkan oleh pembakaran yang kurang sempurna dari mesin kendaraan bermotor dan penyetelan mekanisme pembakaran yang salah.
Dalam mengurangi polusi udara akibat emisi gas buang kendaraan bermotor, maka cara yang paling efektif dan ekonomis adalah dengan menggunakan peralatan yang dapat menurunkan kadar emisi gas buang kendaraan bermotor. Peralatan yang sering dipakai adalah Catalytic Converter {Katalis pengkonversi).
Penelitian ini dilakukan untuk mengetahui pengaruh penggunaan peralatan tambahan Catalytic Converter, dengan desain bentuk laluan yang optimum, terhadap keefektifan peralatan tambahan Catalytic Converter terhadap efisiensi konversi emisi gas buang. Untuk mendapatkan desain bentuk laluan yang optimum, maka penulis melakukan proses desain dengan bantuan CFD. Adapun tujuan dari pemakaian CFD ini adalah untuk menghemat biaya penelitian dalam membuat model bentuk laluan.
Pengujian efisiensi konversi catalytic converter dilakukan pada mesin Otto, di laboratorium Pembakaran dan Energi Jurusan Mesin FTUI.
Dari pengujian tersebut didapat efisiensi konversi yang baik dari catalytic converter, dengan bentuk laluan yang didesain optimum, dalam mengkonversi emisi gas buang kendaraan bermotor."
Fakultas Teknik , 2000
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library