Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Novan Akhiriyanto
Abstrak :
ABSTRAK
Kepulauan Selayar sebagai salah satu Kabupaten penghasil kelapa beserta kopra terbesar di Provinsi Sulawesi Selatan memiliki potensi energi dari limbah industri kopra yang cukup besar berupa tempurung dan sabut kelapa. PLTD berbahan bakar BBM merupakan satu-satunya pemasok energi listrik di Selayar, sehingga biaya pembangkitan listrik relatif lebih mahal dibanding dengan menggunakan bahan bakar fosil lainnya dan juga menimbulkan permasalahan emisi gas buang. Pemanfaatan limbah industri kopra sebagai bahan bakar pembangkitan listrik merupakan alternatif yang ditawarkan dalam studi ini. Pembangkit listrik tenaga gasifikasi biomassa PLTGBm dengan reaktor downdraft gasifier menghasilkan gas mudah terbakar yang digunakan sebagai bahan bakar generator mesin gas untuk menghasilkan energi listrik diterapkan dengan 2 dua skenario pengoperasian, yaitu untuk membantu memikul beban siang 16 jam operasi dengan faktor kapasitas CF sebesar 66,67 dan beban malam 8 jam operasi dengan CF sebesar 33,33 . Potensi daya listrik dengan CF 66,67 sebesar 730 kW dari PLTGBm tempurung mempunyai kontribusi pembangkitan listrik mencapai 12,47 dalam memikul beban listrik pada April 2017 dengan potensi penghematan biaya bahan bakar menggantikan biaya pengadaan BBM untuk pembangkitan listrik sebesar Rp. 29.101.125,80 dan 1.470 kW dari PLTGBm sabut mempunyai kontribusi mencapai 25,10 dengan potensi penghematan sebesar Rp. 58.618.416,79. Sedangkan potensi daya listrik dengan CF 33,33 sebesar 1.470 kW dari PLTGBm tempurung mempunyai kontribusi mencapai 14,14 dengan potensi penghematan sebesar Rp. 19.462.180,74 dan 2.950 kW dari PLTGBm sabut mempunyai kontribusi mencapai 28,38 dengan potensi penghematan sebesar Rp. 39.063.083,22. Analisis kelayakan ekonomi juga diperhitungkan dalam studi, ditemukan bahwa PLTGBm tempurung 730 kW dan PLTGBm 1.470 kW layak untuk dikembangkan untuk memikul beban siang sedangkan PLTGBm tempurung 1.470 kW dan PLTGBm 2.950 kW tidak layak secara keekonomian.54
ABSTRACT
Selayar Islands as one of the largest copra producing district in South Sulawesi province has large enough the potential of energy from copra industry waste in the form fo coconut shell and husk. Diesel generator is the primary supplier of electricity in Selayar, so that the cost of power generation is relatively more expensive than using other fossil fuels and also raises the problem of emissions. Utilization of copra industry waste as fuel for electricity generation is an alternative offered in this study. Biomass gasification power plant PLTGBm with reactor downdraft gasifier produce flammable gas used as fuel gas engine generator to generate electrical energy is applied to the 2 two scenarios of operation, which is to help carry the day load 16 operation hours by a capacity factor CF of 66.67 and night load 8 operation hours with CF of 33.33 . Electric power potential with CF 66.67 amounting to 730 kW of PLTGBm shell contributes power generation to 12.47 in the burden of electricity load in April 2017 with the potential fuel cost savings offset the cost of procurement of oil fuel for electricity generation amounted to Rp. 29.101.125,80 and 1,470 kW from PLTGBm husk have contribution to 25,10 with the potential of savings amount Rp. 58.618.416,79. While the potential of electric power with CF 33.33 of 1470 kW from PLTGBm shell has a contribution to 14.14 with a potential savings of Rp. 19.462.180,74 and 2,950 kW from PLTGBm husk have contributed to 28.38 with a potential savings of Rp. 39.063.083,22. Economic feasibility analysis is also taken into account in the study, it was found that the shell PLTGBm 730 kW and 1,470 kW PLTGBm are feasible to be developed to carry the load during PLTGBm shell while 1,470 kW and 2,950 kW PLTGBm unfeasible economically.55
2017
T47936
UI - Tesis Membership  Universitas Indonesia Library
cover
Gunawan Setiadi
Abstrak :
Dalam rangka memenuhi kebutuhan listrik di Sulawesi Utara, Sulawesi Tengah dan Gorontalo, PT X dihadapkan pada tantangan dalam memenuhi kebutuhan listrik proyek pengembangan Kawasan Ekonomi Khusus (KEK) di Bitung dan Palu. Tidak terjangkaunya jaringan pipa gas yang bersumber di sekitar Kota Luwuk dan kecilnya kebutuhan gas menjadi kendala. Gas alam dalam bentuk cair (LNG) menjadi alternatif untuk pasokan gas ke pembangkit listrik di Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) dan Gorontalo (100 MW) menggunakan sumber LNG dari Bontang maupun Sengkang dengan kebutuhan gas total sebesar 26,41 MMSCFD. Optimasi Logistik LNG perlu dilakukan untuk mendapatkan biaya transportasi minimum. Dengan membandingkan lima kapal LNG yang akan digunakan yaitu kapal berkapasitas 10.000 m3 sampai dengan 22.500 m3 yang ada di pasaran. Metode penelitian menggunakan Solver Add-In yang ada pada Microsoft Excel dengan objective function meminimalkan biaya Distribusi LNG. Hasil optimasi berdasarkan tiga skenario dan dua sumber LNG terhadap jarak sumber LNG ke tujuan pengiriman dalam periode satu tahun didapatkan bahwa, metode transportasi LNG yang menghasilkan biaya distribusi minimum adalah menggunakan skenario Milk-Run dari sumber LNG Bontang dengan total biaya transportasi diperoleh sebesar USD 17.207.897 atau setara dengan 1,53 USD/MMBTU dengan satu buah kapal LNG berkapasitas 12.000 m3. ......In the framework of fulfilling the electricity needs in North Sulawesi, Central Sulawesi and Gorontalo, PT X is faced with challenges in fulfilling the electricity needs of the Special Economic Zone (KEK) development project in Bitung and Palu. The inaccessibility of gas pipelines sourced in and around Luwuk City and the small gas requirement becomes an obstacle. Liquefied Natural Gas (LNG) becomes an alternative to supply gas to a power plant in Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) and Gorontalo (100 MW) using LNG sources from Bontang and Sengkang with total gas requirements of 26.41 MMSCFD. LNG Logistics Optimization is necessary to obtain minimum transportation costs. By comparing five LNG vessels that will be used, with a capacity of 10,000 m3 up to 22,500 m3 on the market. The research method uses a Solver Add-In in Microsoft Excel with an objective function minimizing the cost of LNG distribution. The optimization results based on three scenarios and two sources of LNG on the distance of the LNG source to the delivery destination in a one-year period found that the LNG transportation method that produces minimum distribution costs using the Milk-Run scenario from the Bontang LNG source with total transportation costs of USD 17,207,897 or equivalent with 1.53 USD/MMBTU with one 12,000 m3 LNG capacity vessel.
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54361
UI - Tesis Membership  Universitas Indonesia Library
cover
Eka Nurdiana
Abstrak :
Buruknya pencemaran lingkungan sebagai dampak pemanfaatan energi fosil, membuat dunia bertransformasi pada pemanfaatan energi ramah lingkungan yaitu energi terbarukan, khususnya energi surya photovoltaic (PV). Bagian terpenting dari sistem PV adalah performansinya dalam menghasilkan energi. IEC 61724 menetapkan parameter performansi sistem PV antara lain produksi energi, array yield, final yield, reference yield, performance ratio, capacity factor, efisiensi energi dan losses. Pada penelitian ini, kinerja sistem PV atap berkapasitas 10,6 kWp di Gedung Energi, Puspiptek dievaluasi untuk mengetahui nilai parameter performansinya menurut IEC 61724 sebagai tolok ukur kinerja sistem PV. Evaluasi dilakukan berdasarkan pemantauan selama delapan bulan dengan data yang diperolah dari SCADA pada sistem PV. Analisis produksi energi menunjukkan bahwa sistem PV mampu menghasilkan energi AC sebesar 36,10 kWh per hari. Analisis array yield, reference yield dan final yield memperlihatkan bahwa sistem PV mampu beroperasi secara penuh rata-rata selama 3,51 jam per hari dengan potensi penyinaran matahari rata-rata selama 4,14 jam per hari dimana produksi energi AC rata-rata selama 3,41 jam per hari. Analisis performance ratio menunjukkan bahwa sistem PV mampu mengubah 82,67% energi matahari yang diterimanya. Analisis capacity factor memberikan hasil 14,19% yang berarti sistem PV beroperasi secara penuh selama 34,62 hari selama periode pemantauan. Analisis efisiensi menunjukkan bahwa array PV bekerja dengan efisiensi 15,31% dan inverter bekerja dengan efisiensi 96,70%. Dari nilai-nilai efisiensi tersebut, dihasilkan bahwa sistem PV secara keseluruhan bekerja dengan efisiensi sistem 14,80%. Hasil analisis array capture losses menunjukkan bahwa pada array PV terjadi losses rata-rata sebesar 0,63 kWh/kWp per hari dan analisis system losses menunjukkan bahwa losses pada inverter PV rata-rata sebesar 0,1 kWh/kWp per hari. Pada akhir penelitian ini dilakukan simulasi menggunakan aplikasi online PVGIS untuk untuk mendapatkan data jumlah produksi energi. Hasil simulasi tersebut dibandingkan dengan hasil perhitungan yang dilakukan sebelumnya. Setelah dilakukan perbandingan, disimpulkan bahwa hasil perhitungan produksi energi dan radiasi matahari global secara umum mendekati hasil simulasi produksi energi dan radiasi matahari global kecuali pada bulan Januari dan Februari 2020. Hasil perhitungan dan simulasi pada bulan-bulan tersebut memilki selisih cukup tinggi. Berdasarkan evaluasi kinerja secara keseluruhan, sistem PV 10,6 kWp di Gedung Energi Puspiptek memiliki kinerja yang baik. ......Poor environmental pollution as a result of the use of fossil energy, making the world transform to use renewable energy that is more environmentally friendly, especially photovoltaic (PV) solar energy. The most important issue of a PV system is their performance in producing energy. IEC 61724 establishes the performance parameters of a PV system including energy production, array yields, final yields, reference yields, performance ratios, capacity factors, energy efficiency and losses. In this study, the performance of the 10,6 kWp PV rooftop system in the Energy Building, Puspiptek was evaluated to determine the value of its performance parameters according to IEC 61724 as a benchmark for PV system performance. The evaluation was carried out based on eight months monitored period with the data obtained from the SCADA in the PV system. Analysis of energy production shows that the PV system is able to produce AC energy of 36.10 kWh per day. Analysis of array yields, reference yields, and final yields shows that the PV system is capable to operate for 3.51 hours per day on average with an average solar irradiation potential of 4.14 hours per day and the AC energy production is 3.41 hours per day on average. Performance ratio analysis shows that the PV system is able to convert 82.67% of the concerning solar energy. Capacity factor analysis gives a result of 14.19% which means the PV system has been operated for 34.62 days at its full nominal power during the monitoring period. Analysis of efficiency shows that the PV array works with an efficiency of 15.31% and the inverter works with an efficiency of 96.70%. Based on these efficiency values, the whole PV system works with a system efficiency of 14.80%. The analysis of array capture losses shows that losses on the PV arrays 0.63 kWh/kWp per day on average and system losses analysis shows that losses on PV inverters 0.1 kWh/kWp per day on average. At the end of this study, a simulation by an online PVGIS application is used to obtain data on energy production. The results of the simulation are compared with the results of previous calculations. From the comparison, it was concluded that the results of the calculations of energy production and global solar radiation approached the results of simulations of energy production and global solar radiation except in January and February 2020. The calculation and simulation results of these months show greater differences. Based on an overall performance evaluation, the 10,6 kWp PV system at the Puspiptek Energy Building has good performance.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library