Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Ralfi Wibowo Rachmad
Abstrak :
DC-DC Converter yang umum digunakan adalah buck converter dengan kemampuannya untuk dapat menurunkan tegangan masukan ke beberapa level tegangan keluaran tergantung terhadap nilai duty cycle yang diberikan kepada rangkaian. Buck converter akan menggunakan metode switching dalam pengoperasiannya dan akan memiliki efisiensi konversi daya yang lebih baik daripada regulator linear. Topologi utama pada aplikasi rangkaian buck converter adalah asynchronous buck converter dan synchronous buck converter. Perbedaan kedua topologi terletak pada komponen low side switch, topologi asynchronous akan memanfaatkan dioda sedangkan topologi synchronous memanfaatkan MOSFET. Kedua jenis topologi akan memiliki keunggulan dan kekurangannya masing masing dari sisi performa maupun kompleksitas penyusunan rangkaian. Pada penelitian ini, akan dilakukan rancang bangun buck converter dengan topologi asynchronous dan topologi synchronous. Hasil rangkaian akan dianalisa performanya, khususnya aspek efisiensi konversi rangkaian dalam beberapa kondisi operasi converter. Dari hasil penelitian didapatkan kedua jenis topologi memiliki efisiensi yang cenderung lebih baik ketika ditingkatkan arus operasinya, dimana rangkaian synchronous memiliki efisiensi yang lebih baik pada duty cycle rendah dan pada duty cycle yang tinggi kedua topologi memiliki efisiensi yang hampir serupa.  Rangkaian juga memiliki potensi pengembangan untuk pengisian atau charging baterai, khsusunya baterai lithium-ion 18650 dengan kemampuannya melakukan pengaturan tegangan dalam kondisi arus operasi yang konstan. ...... One kind of DC-DC converter that have been widely used is a buck converter with its ability to lower the input voltage to a desired output voltage depending on the value of the duty cycle given to the circuit. Buck converter will utilize switching method on its operation and will have a better efficiency than a linear regulator. The main topology in the application of a buck converter is an asynchronous buck converter and synchronous buck converter. The difference between the two topologies lies in its use of component in the low side switch, asynchronous buck converter make use of a diode as the low side switch whereas synchronous buck converter uses a MOSFET. These two topologies have its own advantages and disadvantages from a performance point of view or from a design complexity. In this research, buck converter with asynchronous and synchronous topologies will be designed. The design prototypes will be analysed, especially in the aspect of power conversion efficiency. From the results obtained in this research, the two topologies have a better overall efficiency in a higher current operation, with the synchronous have a better overall efficiency at lower duty cycle range and at the higher duty cycle range, the two topologies have an almost similar overall efficiency. The buck converters have a potential integration with the application of battery charging system, especially 18650 lithium-ion battery with its ability to regulate voltage on a constant current output.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Paramarddhika Alfarist Bustaman
Abstrak :
Tren kendaraan listrik di Indonesia yang semakin meningkat mendorong industri manufaktur kendaraan listrik untuk meningkatkan nilai tingkat komponen dalam negeri (TKDN). DC-DC converter menjadi salah satu komponen penting dari modul pengisian daya baterai kendaraan listrik. Topologi dari DC-DC converter dibagi menjadi dua, yaitu non-isolated DC-DC converter dan isolated DC-DC converter yang masing-masing memiliki kelebihan dan kekurangan. Penelitian ini akan melakukan simulasi dan analisis terhadap kerja dan efisiensi dari synchronous buck converter sebagai non-isolated converter dan flyback converter sebagai isolated converter untuk aplikasi pengisian daya baterai motor listrik. Variasi yang digunakan dalam penelitian adalah nilai duty cycle dari kedua rangkaian. Simulasi kedua rangkaian converter dilakukan dalam software LTspice. Hasil penelitian yang diperoleh dari penelitian ini menunjukkan bahwa nilai efisiensi tertinggi dari simulasi rangkaian synchronous buck converter sebesar 97,71% dan rangkaian flyback converter sebesar 96,65%. ......The increasing trend of electric vehicles in Indonesia is encouraging the electric vehicle manufacturing industry to increase the value of the tingkat kandungan dalam negeri (TKDN). The DC-DC converter is an important component of the electric vehicle battery charging module. The topology of DC-DC converters is divided into two, namely non-isolated DC-DC converters and isolated DC-DC converters, each of which has advantages and disadvantages. This research will simulate and analyze the work and efficiency of a synchronous buck converter as a non-isolated converter and a flyback converter as an isolated converter for electric motor battery charging applications. The variation used in the research is the duty cycle value of the two circuits. Simulation of both converter circuits is carried out in the LTspice software. The research results obtained from this research show that the highest efficiency value from the simulation of the synchronous buck converter circuit is 97.71% and the flyback converter circuit is 96.65%.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khalif Ahadi
Abstrak :
Tesis ini bertujuan untuk melakukan pengembangan metode perlakuan terhadap tegangan keluaran sistem fuel cell yang cenderung berubah seiring perubahan beban agar mampu bertahan pada nilai yang relatif konstan. Hal ini dilakukan dengan menambahkan suatu DC-DC converter berupa buck converter pada keluaran fuel cell sebelum diubah menjadi tegangan AC oleh inverter. Hasil uji coba menunjukkan tegangan keluaran sistem menjadi relatif tetap pada tegangan 12,4 volt +2,5% saat diberi beban yang berfluktuasi jika dibandingkan dengan tegangan keluaran fuel cell itu sendiri. ...... The purpose of this thesis is to conduct method development treatment of output voltage of fuel cell system, which is tend to change along with load fluctuation, to be able to withstands on relatively constant value. It?s done by adding a buck converter as a DC-DC converter on fuel cell's output before it's changed as AC voltage by inverter. The experiment result shows that output voltage of the system is relatively constant on 12.4 volt +2,5% under fluctuated load in comparison with output voltage from fuel cell it self.
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31603
UI - Tesis Open  Universitas Indonesia Library
cover
Gunawan
Abstrak :
Buck converter merupakan salah satu jenis switching converter yang dapat menurunkan tegangan keluarannya. Agar buck converter dapat menghasilkan tegangan keluaran yang diinginkan diperlukan pengendali sistem buck converter. Pengendali yang dipakai pada sistem buck converter pada skripsi ini adalah pengendali PID. Pengendali PID yang digunakan ditala dengan menggunakan metode Ciancone. Pengendali diimplementasikan pada mikrokontroler Atmega16 dengan algoritma pengendali PID diskrit Dari hasil simulasi dan uji coba alat didapatkan pengendali PID diskrit yang ditala dengan metode Ciancone ini memiliki respon yang cukup baik, dengan transient response yang cepat dan steady state error yang mendekati nol.
Buck converter is one of switching converter that can lower its output voltage. Buck converter need to be controlled in order that to get an approrite output voltage waveform. The controller used in this system is PID controller. This PID controller is tuned using Ciancone method. The controller is implemented in microcontroller Atmega16 with discrete PID algorithm. From the simulation result, can be concluded that the discrete PID tuned with Ciancone method provide a good response, with a fast transient response and nearly zero steady state error.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51404
UI - Skripsi Open  Universitas Indonesia Library
cover
Ralfi Wibowo Rachmad
Abstrak :

Algoritma MPPT dengan Teknik Perturb and Observe akan memiliki akurasi yang lebih baik namun metode Constant Voltage akan menawarkan implementasi yang lebih sederhana. Diperlukan perbandingan antara kedua algoritma tersebut dalam variasi kondisi lingkungan sehingga dapat menjadi aspek pertimbangan untuk implementasi metode algoritma MPPT pada panel surya. Pada penelitian ini akan dirancang sistem integrasi panel surya dan synchronous buck converter. Synchronous buck converter akan diuji terlebih dahulu kemampuan penurunan tegangan beserta efisiensi konversi daya dan dibandingkan dengan Asynchronous Buck Converter. Pada sistem integrasi synchronous buck converter akan mengatur karakteristik pembebanan dengan penerapan metode Perturb and Observe dan Constant Voltage untuk pelacakan titik daya maksimum panel surya. Hasil sistem integrasi dengan synchronous buck converter dengan implementasi metode Perturb and Observe dan Constant Voltage akan diberikan nilai iradiasi yang bervariasi untuk melihat karakteristik pelacakan dari kedua metode. Pada penelitian ini, hasil implementasi MPPT pada synchronous buck converter menunjukkan bahwa teknik Perturb and Observe memiliki akurasi yang lebih baik dibandingkan dengan teknik Constant Voltage dengan rata rata daya 3392,79 W dalam beberapa variasi iradiasi dibandingkan dengan rata rata daya teknik Constant Voltage 3060,75 W. ......MPPT algorithm with Perturb and Observe technique will have a better accuracy than Constant Voltage, but because of its indirect tracking, Constant Voltage will have a simpler implementation. More comparison between the two is needed in various operating conditions for further consideration in implementing MPPT algorithms on solar panel. In this research, the integration of solar panel and synchronous buck converter will be designed. Firstly, the synchronous buck performance will be analyzed compared to the conventional asynchronous buck. In the integrated solar panel system, synchronous buck converter will be used to control solar panel load characteristics with the implementation of Perturb and Observe and Constant Voltage method. The implementation of the two methods will be analyzed under various irradiance to observe the tracking characteristics of the two methods. Results shows that Perturb and Observe technique is more efficient in tracking the Maximum Power Point than Constant Voltage technique with 3392.79 W average solar panel power output in varying irradiation compared to 3060.75 W average solar panel power output of the Constant Voltage technique.

Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wing Wira Adimas Ramadhan
Abstrak :
Dewasa ini teknologi modul surya mengalami penurunan harga produksi sebesar. Hal ini disebabkan munculnya teknik produksi yang mengefisiensikan produksi modul surya. Modul surya dalam pemakaiannya memiliki beberapa keterbatasan diakibatkan dari karakter pembebananya mengikuti kurva karakteristik I-V dari modul. Hal ini memunculkan teknologi Maximum Power Point Tracking agar daya modul dapat dimanfaatkan secara maksimal. Pada penelitian ini dilakukan rancang bangun Solar Charge Controller dengan metode Maximum Power Point Technique (MPPT) dengan teknik Perturb and Observation(P&O). P&O adalah salah satu teknik dalam metode MPPT yang paling banyak digunakan. Alat yang dirancang berbasis mikrokontroler Arduino sabagai perangkat yang berperan mengendalikan rangkaian serta menghasilkan sinyal PWM untuk mengatur buck conveter. Pengujian terhadap hasil rancang bangun dilakukan untuk memvalidasi kerja serta efisiensi rangkaian dengan pembanding rangkaian tanpa MPPT. Pengujian efisiensi pada rancang bangun MPPT berhasil mendapat peningkatan efisiensi pada beban 1, 2, dan 3 sel secara berurutan sebesar 52, 38, dan 9.
Today solar module technology has decreased production prices. This is due to the emergence of production techniques that streamline the production of modul suryas. The modul surya in its use has several limitations due to the characterization of its load following the I-V characteristic curve of the modul. This raises the Maximum Power Point Tracking technology so that modul power can be fully utilized. In this study the design of Solar Charge Controller was carried out using the Maximum Power Point Technique (MPPT) method with Perturb and Observation (P & O) techniques. P & O is one of the most widely used techniques in the MPPT method. The tool is designed based on the Arduino microcontroller as a device that has the role of controlling the circuit and producing PWM signals to regulate buck conveter. Several tests were carried out to validate the circuit work and work efficiency of the designed MPPT and without MPPT circuit as a comparison. Obtained on the design MPPT succeeded in increasing the efficiency of loads 1,2, and 3 respectively by 52, 38, and 9.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farell Adiputra
Abstrak :
Maximum Power Point Tracking merupakan alat tracking yang digunakan untuk menemukan titik arus dan tegangan paling optimal dari panel surya. Pengontrol pengisian daya melihat output panel dan akan membandingkannya dengan titik tertinggi perolehan daya dari panel tersebut. Alat ini juga dibutuhkan untuk mencari tingkat duty cycle (nilai arus) terbaik untuk mendapatkan nilai daya maksimum ke dalam baterai. Kinerja maximum power point tracking (MPPT) dipengaruhi oleh beberapa faktor, diantaranya adalah algoritma yang digunakan untuk memperoleh nilai maksimum dari panel surya. Salah satu algoritma yang telah digunakan dalam MPPT adalah perturb & observation dimana algoritma ini menggunakan mekanisme tracing daya puncak dengan cara menaikan nilai arus secara bertahap sampai mencapai titik tertinggi daya yang dapat diperoleh oleh panel surya. Selain algoritma perturb & observation terdapat algoritma lain seperti neural network dan Fuzzy Logic. Algoritma fuzzy memiliki keunggulan diantaranya kemampuan membaca data secara lebih akurat, dapat digunakan pada pemodelan fungsi non linear, dan memiliki tingkat penyesuaian yang cepat dan fleksibel. Pada skripsi ini akan digunakan algoritma fuzzy untuk mendapatkan daya tertinggi dari solar charge controller. Hasil penerapan algoritma Fuzzy ini dibandingkan dengan algoritma perturb & observation pada kondisi uji coba yang dibuat sama. Hasil dari eksperimen menunjukkan bahwa periode waktu yang dibutuhkan Fuzzy Logic untuk mencapai titik maksimal 21.698% lebih singkat dibandingkan metode perturb & Observation. ...... Maximum Power Point Tracking is a tracking tool used to find the most optimal current and voltage points from solar panels. The charging controller looks at the panel's output and compares it to the highest point of power gain from that panel. This tool is also needed to find the best level of duty cycle (current value) to get the maximum power value into the battery. Maximum power point tracking (MPPT) performance is influenced by several factors, including the algorithm used to obtain the maximum value from the solar panel. One of the algorithms that have been used in MPPT is perturb & observation where this algorithm uses a peak power tracing mechanism by increasing the current value gradually until it reaches the highest point of power that can be obtained by solar panels. In addition to the perturb & observation algorithm, there are other algorithms such as neural networks and fuzzy logic. The fuzzy algorithm has advantages such as the ability to read data more accurately, can be used in modeling non-linear functions, and have a fast and flexible adjustment rate. In this thesis, a fuzzy algorithm will be used to get the highest power from the solar charge controller. The results of the application of the fuzzy algorithm are compared with the perturb & observation algorithm in the same experimental conditions. The results of the experiment show that the time period required for Fuzzy Logic to reach the maximum point is 21.698% shorter than the Perturb & Observation method.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reikan Kresna Maulana
Abstrak :
Penggunaan metode direct untuk MPPT seperti increamental conductance, perturb and orbservation tidak menghasilkan pencarian yang cepat dan berosilasi pada daerah MPP. Perubahan nilai duty yang tetap dari metode tersebutlah yang menghasilkan keadaan tersebut. Sedangkan penggunaan metode PID dapat menghasilkan pencarian lebih cepat dan menghasilkan osilasi lebih kecil tetapi metode ini dikategorikan metode inderect dikarenakan pencarian titik tegangan referensi berdasanakan metode trial and error. Sehingga diajukan penggunaaan metode direct yang lain dengan yang menghasilkan pencarian lebih cepat dan osilasi lebih kecil yaitu penggunaan logika fuzzy. Perancangan dilakukan dengan metode simulasi, yaitu mensimulasikan rangkaian yang akan dipergunakan, rangkaian buck converter, dan beban yang berupa baterai dan mendapatkan nilai masukan jika nilai PWM rangkaian buck converter diubah – ubah. Untuk membandingkan hasil penggunaan algoritma fuzzy, akan disajikan perbandingan jika menggunakan algoritma P&O, hasil didapatkan nilai tanggapan waktu menggunakan algoritma fuzzy lebih cepat dan tunak setelah 347,8246 mikro sekon dibandingkan 608,6962 mikro sekon jika menggunakan algoritma P&O, didapatkan hasil arus tunak pada besar arus 1.6525 Ampere pada sisi keluaran sedangkan dengan menggunakan algoritma P&O akan berosilasi diantara 1.281 Ampere dan 1.689 Ampere, menunjukan bahwa penggunaan algoritma fuzzy manghasilkan hasil yang lebih baik untuk sistem pengecasan baterai dikarenakan terdapat mode constant current pada saat pengisian baterai lithium – ion yang perlu diperhatikan. ......The use of direct methods for MPPT such as increamental conductance, perturb and orbservation does not result in fast and stable power tracking in the MPP region. It is the fixed changes in duty value of the mentioned method that is resulting such situation. Whereas the use of the PID method can produce a much faster power tracking with smaller oscillations, but as this method is categorized as an inderect method the search for the correct voltage refenrece points is still based on the trial and error method.So, it is proposed to use another direct method which could result in much faster power tracking with smaller oscillations, namely the use of fuzzy logic algorithm. The design is carried out by simulation method, namely simulating the circuit to be used, the buck converter circuit, and the load in the form of a battery and obtaining the input and ouput value in reference to PWM value of the buck converter circuit, when the value is varied. To compare the results of using the fuzzy algorithm, a comparison will be presented such when using the P&O algorithm. The end results obtained is that the rise time of using the fuzzy algorithm are much faster and able to reach stedy state condition after just 347.8246 micro seconds compared to 608.6962 micro seconds when using the P&O algorithm, another result is that the current value are stable at 1.6525 Ampere at the battery output side, while using the P&O algorithm it will oscillate between 1.281 Ampere and 1.689 Ampere, indicating that the use of the fuzzy algorithm produces better results for a system with battery load because there is a constant current mode when recharging lithium-ion batteries that need to be noted.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Yasil Farabi
Abstrak :
Pada skripsi ini, dirancang sebuah simulator sel surya menggunakan buck converter yang kemudian dianalisis menggunakan diagram bode dan TKA. Model statik sel surya digunakan untuk mengimplementasikan karakteristik dari sel surya. Low-pass filter digunakan untuk mengubah model statik sel surya menjadi model dinamik sel surya. Pengendali PI digunakan untuk mengendalikan switch buck converter melalui pulsa-pulsa yang dihasilkan oleh PWM Generator. Sistem dianalisis menggunakan diagram bode terhadap masukannya, yaitu solar irradiance dan suhu sel. Beban, konstanta proportional, dan konstanta integral akan divariasikan untuk menganalisis sistem. Sistem juga dianalisis dengan menggunakan TKA untuk mengetahui seberapa besar batas gain kestabilan sistem. Dari diagram bode yang didapat, sistem terlihat menyerupai sistem orde tiga. Dari TKA, dengan mengubah beban didapat bahwa batas gain kestabilan sistem sangatlah tinggi, sekitar untuk masukan perubahan solar irradiance, dan untuk masukan perubahan suhu sel. Karena nilai tersebut sangatlah tinggi, sehingga sistem dapat dinyatakan robust terhadap perubahan beban dan cenderung stabil.
This thesis presents a Photovoltaic Simulator Simulation using Buck Converter with analysis using bode diagram and root locus. A PV Static Model is used to implement the characteristics of actual solar cell. A Low-Pass Filter is used to turn the static model of photovoltaic into the dynamic model. PI Controller is used to control buck converter?s switch via PWM Generator. The system is analyzed using bode diagram for its inputs, such as solar irradiance and cell?s temperature. Load, Kp, and Ki will be varied to analyzed the system. Root locus method is used to analyze the maximum gain system. From bode plot, the analyzed system similar to third order system. From root locus, the limits of gain stability system are so high about for solar irradiance input, and for cell?s temperature input, so the system can be declared stable.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S89
UI - Skripsi Open  Universitas Indonesia Library