Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Jonathan
Abstrak :
Fast pyrolysis biomassa dapat menghasilkan bio-oil dengan potensi aplikasi yang luas, salah satunya dapat digunakan sebagai bio-fuel. Sayangnya, bio-oil berbasis biomassa memiliki sifat fisikokimia yang buruk dan banyak mengandung senyawa oksigenat sehingga heating value-nya rendah. Plastik diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Bonggol jagung akan dipirolisis bersama-sama dengan plastik polipropilena dalam reaktor batch berpengaduk dengan variasi rasio plastik dalam umpan sebesar 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, dan 87,5%. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,5 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Terjadi peningkatan pH, densitas, dan warna pada bio-oil hasil slow co-pyrolysis. Karakterisasi GC-MS menunjukkan penurunan senyawa oksigenat di dalam bio-oil berbanding lurus dengan komposisi plastik dalam umpan. Efek sinergetik teramati saat rasio plastik ≥50%. Komposisi umpan 12,5% bonggol jagung dan 87,5% plastik PP menghasilkan yield tertinggi dengan kandungan senyawa oksigenat terendah. ......Fast pyrolysis of biomass produces bio-oil with many potential applications, one of them is to be bio-fuel. Unfortunately, biomass derived bio-oil has low physicochemical properties and contains lot of oxygenated compounds thus the heating value is low. Plastics are known to have higher H/C ratio and almost no oxygen content, so co-pyrolysis of biomass and plastic could be used as a simple, effective yet cheap bio-oil upgrading solution. By mixing those two as a feed, a synergetic effect will occur and improve the bio-oil both in quantity and quality. Corn cobs are chosen as the biomass due to its high cellulose content and availability. Corn cobs will be slow co-pyrolyzed with polypropylene plastic in a two stirrer batch reactor with plastic ratio variation of 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, and 87,5%. Maximum temperature of 500oC, 0,5 L/min nitrogen flow, 10 minutes holding time and heating rate of 5oC/min was used in the experiment. pH, density, and color improvement were observed. GC-MS results showed that lower oxygenated compounds in the bio-oil are associated with higher plastic feed composition. Synergetic effect is happened when plastic ratio is ≥50%. Composition of 12,5% corn cobs and 87,5% polypropylene plastic is found to produce the highest yield of bio-oil with the lowest oxygenates.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64373
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yolla Miranda
Abstrak :
Bonggol jagung merupakan limbah dengan jumlah yang cukup banyak di Indonesia. Sejauh ini pemanfaatan utama untuk biomassa. Namun biomassa tersebut masih mengalami kendala karena tingginya senyawa oksigenat yang menyebabkan heating value-nya rendah. Plastik polipropilena diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Pencampuran biomassa dan plastik akan menghasilkan efek sinergetik dalam memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Berbagai penelitian pada slow co-pyrolysis telah dilakukan terutama pada reaktor tubular dengan rasio tinggi terhadap diameter, lebih dari 4. Tetapi untuk skala besar, bentuk reaktor seperti ini sangat sulit dilakukan scale-up. Pada penelitian ini reaktor dibuat dengan rasio kurang dari 2. Perpindahan panas khususnya pada plastik yang memiliki konduktivitas termal rendah dibantu dengan adanya pengaduk untuk memperbaiki persebaran perpindahan panas tersebut. Identifikasi pengaruh efek sinergetik dilakukan dengan menganalisis bio-oil menggunakan FTIR dan GC-MS. Efek sinergetik yield bio-oil terjadi pada komposisi PP terhadap bonggol jagung sebesar 50-87,5 dengan 87,5 sebagai yield tertinggi. Sementara efek sinergetik kualitas bio-oil yang berupa peningkatan senyawa non-oksigenat terjadi pada komposisi PP 37,5-87,5.
Corn cob is a waste which has considerable amount in Indonesia. So far, its utilization especially for biomass. However, biomass still having problems because the high oxygenate compound which causes low heating value. The pure polypropylene plastic has a H C ratio higher and poor in oxygen, so slow co pyrolysis of biomass with plastic can be used for bio oil upgrading solutions which is simple, effective and inexpensive. By mixing the two feedstocks, a synergetic effect would be created to improve the quantity and quality of the bio oil produced. Various studies on the slow co pyrolysis has been carried out mainly in the tubular reactor with a high ratio of the diameter, more than 4. But for large scale, that reactor design will be very difficult to scale up. This research, reactor was made with a ratio less than 2. The heat transfer especially on the plastic that has a low thermal conductivity helped by stirrer to improve the distribution of heat transfer. Identification of the synergetic effect was done by analyzing bio oil using FTIR and GC MS. Synergetic effects of bio oil yield occurred in the composition of the PP towards corn cobs of 50 to 87.5 which 87.5 as the highest yield. While the synergetic effect of the quality in bio oil as an increase in the composition of the non oxygenate which exist in PP composition 37.5 to 87.5.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S62753
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alfinuha Nabil
Abstrak :
ABSTRAK
Material plastik, seperti polipropilena PP , yang mengandung banyak hidrogen sangat potensial untuk digunakan sebagai sumber hidrogen pada co-pyrolysis bersama biomassa seperti bonggol jagung. Dengan mencampurkan keduanya, akan tercipta suatu efek sinergetik yang akan meningkatkan kualitas bio-oil yang dihasilkan. Investigasi yang mengarah pada fenomena efek sinergetik ini dievaluasi dengan menggunakan reaktor displacement untuk melakukan proses slow co-pyrolysis. Eksperimen yang melibatkan umpan yang didominasi biomassa, yaitu PP < 50 regime 1 , terjadi kontraksi pada reaktor kemudian diikuti dengan tidak berubahnya displacement dari silinder piston, sementara pada pirolisis umpan yang didominasi plastik, yaitu PP ge; 50 regime 2 menunjukkan adanya swelling dan contraction pada reaktor. Pada regime 1, sifat termoplastis tidak muncul pada char, sementara pada regime 2, sifat termoplastis muncul pada char. Eksperimen juga menunjukkan bahwa pada komposisi PP < 37,5 , char masih mengandung senyawa oksigenat, dan pada PP ge; 37,5 , char tidak mengandung oksigen. Sementara itu, pada komposisi PP 75 menunjukkan adanya perpindahan massa oksigen hasil pirolisis biomassa ke lelehan plastik. Hasil semua eksperimen di atas menunjukkan bahwa pirolisis umpan regime 2 mengindikasikan adanya interaksi yang kuat antara hasil pirolisis biomassa dan plastik PP yang mengarah ke efek sinergetik
ABSTRACT
Plastic material, such as polypropylene plastic PP , which has hydrogen content compared to that in biomass, is potential to be used as a hydrogen source for pyrolysis of biomass, such as corncobs. By mixing these two, certain synergistic effect will appear that will improve the quality and quantity of bio oil produced. Investigation of the phenomenon leading to the synergistic effect has been evaluated by using a displacement reactor in the form a tubular batch reactor to perform slow co pyrolysis. Feed compostion was varied at 12.5 , 25 , 37,5 , 50 , 62,5 , 75 , and 87.5 weight of PP . Experiment involving biomass dominated feeds, i.e. PP 50 regime 1 , reactor contracted followed by no displacement of reactor piston, while plastic dominated feeds, i.e. PP ge 50 regime 2 showed swelling and contraction of the reactor. Char in regime 1 showed that thermoplastic properties did not appear on char, while in regime 2, thermoplastic properties did appear on char. Experiment also showed that for PP 37,5 , char still contain oxygenated compounds, while for PP ge 37,5 , char contains no oxygen. Meanwhile, on plastic melt in PP 75 composition showed an oxygen mass transfer to the plastic melt from biomass. The results of all experiments show that co pyrolysis in regime 2 indicates a strong interaction between biomass and plastic leading to synergistic effect.
2017
S67684
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fianna Utomo
Abstrak :
Bonggol jagung memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena banyaknya limbah pertanian jagung Indonesia. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Co-pyrolysis antara bonggol jagung-plastik polipropilena memiliki efek sinergetik yang mengubah sebagian fraksi polar dari bio-oil menjadi fraksi non-polar yang mengandung senyawa non-oksigenat sebagai bahan baku untuk sintesis biofuel. Pada percobaan ini, pirolisis dari fraksi non-polar dilakukan untuk memproduksi bio-oil yang memiliki karakteristik yang dekat dengan bensin. Pirolisis dilakukan pada dua tahapan, di mana tahap pertama adalah co-pyrolysis untuk memproduksi fraksi non-polar dan tahap kedua adalah untuk mempirolisis fraksi non-polar tersebut untuk menurunkan viskositasnya menjadi dekat dengan viskositas bensin. Kedua tahap pirolisis akan dilakukan dalam reaktor tabung berpengaduk pada suhu 100 RPM, heating rate 5°C/menit, dan laju alir nitrogen 750 mL/menit pada tekanan gas nitrogen 3 bar. Variasi yang dilakukan berupa suhu akhir pirolisis tahap kedua. Produk bio-oil dikarakterisasi menggunakan H-NMR, GC-MS, LC-MS, FTIR, dan viskometer. Yield dan viskositas bio-oil dari hasil pirolisis tahap kedua bergantung kepada suhu akhir pirolisis, di mana semakin tinggi suhu, yield akan semakin tinggi dan viskositas juga cenderung untuk semakin tinggi. Adapun bio-oil dengan suhu akhir pirolisis tahap kedua 300°C memiliki karakteristik yang paling dekat dengan bensin.
Corncobs biomass has a high potential to be developed into bio oil because of large amount of maize farm waste in Indonesia. In addition, plastic waste is also abundant in Indonesia, especially polypropylene. Co pyrolysis between corncobs and polypropylene has a synergetic effect that transforms some polar fraction of bio oil into non polar fraction containing non oxygenate compounds as precursor for synthesis of biofuel. In the present work, pyrolysis of the non polar fraction of bio oil was led to produce bio oil which had similar characteristics to that of gasoline. The pyrolysis was carried out in two stages, where the first stage was co pyrolysis to produce non polar bio oil and the second stage was pyrolysis of non polar fraction to reduce its viscosity similar to that of gasoline. The first and second stage pyrolysis was carried out in a stirred tank reactor at 100 RPM, heating rate of 5°C min and nitrogen flow rate of 750 mL min under 3 bar nitrogen gas pressure with the second stage pyrolysis final temperature varied. The resulting bio oil product was characterized by FT IR, GC MS, H NMR, viscometer and LC MS. Bio oil viscosity and yield of the second stage pyrolysis heavily depended on its final temperature, in which the higher the temperature, the higher was the viscosity, yet the higher was the bio oil yield. Bio oil with secondary pyrolysis final temperature of 300°C has the most similarities to gasoline characteristics.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhila Ahmad Anindria
Abstrak :
Bonggol jagung merupakan salah satu biomassa yang memiliki jumlah yang berlimpah di Indonesia. Dengan pirolisis, bonggol jagung dapat dikonversi menjadi bio-oil yang mengandung senyawa seperti furan, fenol, dan turunannya yang dapat dimanfaatkan sebagai pengekstraksi aromatik pada minyak pelumas mentah. Banyaknya kandungan aromatik pada pelumas dapat mempengaruhi sifat fisik pelumas yang menyebabkan gesekan pada bagian-bagian mesin yang dilumasi. Objektif penelitian ini adalah memperoleh fraksi furan, fenol, dan turunannya dari pirolisis yang dapat dimanfaatkan sebagai pelarut aromatik pada pelumas yang optimal. Pirolisis dilakukan pada reaktor berpengaduk dengan heating rate 5oC/menit, suhu maksimal 500oC, dan dialirkan gas N2 dengan laju alir 900 mL/menit. Bio-oil hasil pirolisis mengandung berbagai senyawa yang tidak diinginkan, salah satu yang paling dominan adalah asam karboksilat 37, sementara kandungan furan 13 dan fenol 7. Isolasi fraksi furan dan fenol dilakukan dengan penambahan NaOH dan sentrifugasi untuk menghasilkan dua fasa terpisah, yaitu fasa asam karboksilat serta fasa furan dan fenol. Fasa furan dan fenol mengandung furan 13 dan fenol 27 serta tidak ada kandungan asam karboksilat. Ekstraksi aromatik dilakukan dengan menggunakan fasa furan dan fenol dan pelumas mesin yang dicampur dengan p-xylene sebagai senyawa model aromatik pada suhu konstan 40oC selama 60 menit. Hasil eksperimen menunjukkan bahwa semakin besar rasio berat pelarut terhadap pelumas, sisa aromatik yang terdapat pada rafinat semakin sedikit, dan semakin sedikit jumlah aromatik awal pada pelumas, efektivitas melarutkan aromatik semakin besar. ......Corncob is one of the biomass which has abundant amount in Indonesia. Through pyrolysis, corncobs can be converted into bio oils containing compounds such as furans phenol, and its derivatives which can be utilized as extractants of aromatics in raw lubricant oil. In high temperature, the aromatic content in engine lubricants can affect physical properties of the lubricants causing wearing on engine parts. The object of this research is to utilize the fraction of furan, phenol, and its derivatives from pyrolysis as an optimum aromatic extractant. Pyrolysis has been done in a stirred tank reactor with a heating rate of 5oC min, a maximum temperature of 500oC and flow rate N2 of 900mL min. Bio oil from pyrolysis contains many undesired compounds, one of which was carboxylic acid as the predominant compounds 37, while furan content was 13 and phenol 7. Isolation of furan and phenol fractions has been achieved by the addition of NaOH and then centrifugation to produce two separated phases the carboxylic acid phase and the furan and phenol phase. Furan and phenol phase contains 13 furan and 27 phenol with no carboxylic acid content. The aromatic extraction was performed using furan and phenol phase and an engine lubricant mixed with p xylene as an aromatic compound model at constant temperature of 40oC for 60 minutes. Experiment result shows that the greater the weight ratio of solvent to lubricant, the lower is the aromatic residual present in the raffinate and the lower the initial aromatic content in lubricant, the greater the effectiveness of aromatic extraction.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyssa Ulfatun Jannah
Abstrak :
Sektor transportasi merupakan penyumbang terbesar pencemaran udara, di mana emisi gas buang CO, CO2, dan HC berdampak negatif terhadap kesehatan dan lingkungan. Karbon aktif dapat digunakan sebagai adsorben gas buang kendaraan bermotor (sepeda motor). Bonggol jagung berpotensi digunakan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan lignoselulosa yang tinggi. Pembuatan karbon aktif bonggol jagung dilakukan melalui tahap preparasi dan dehidrasi, aktivasi kimia pertama menggunakan larutan KOH 20% b/v dengan perbandingan massa sampel terhadap larutan 1:4 selama 24 jam, karbonisasi pada suhu 500℃ selama 2 jam dan diayak dengan ukuran 60 mesh, dilanjutkan dengan aktivasi kimia kedua menggunakan variasi KOH 1% b/v, 3% b/v, dan 5% b/v dengan rasio dan waktu yang sama seperti aktivasi kimia pertama. Sampel yang didapatkan kemudian diaktivasi fisika menggunakan gas N2 0,15 NL/menit pada suhu 600℃ selama 1 jam. Karbon aktif yang didapatkan, kemudian diimpregnasi menggunakan larutan MgO 1 M dengan variasi rasio massa sampel terhadap volume larutan adalah 1:5, 1:10, dan 1:15. Proses aktivasi kimia dua tahap berpengaruh memperbesar karakterisasi iodin yang dihasilkan, sedangkan impregnasi MgO akan menurunkan karakterisasi iodin yang dihasilkan dan meningkatkan efektivitas penjerapan gas buang. Sampel dengan karakterisasi iodin terbaik didapatkan pada sampel AK2F 5% dengan luas permukaan 1142,77 m2 /gr, sedangkan sampel dengan efektivitas penurunan gas buang terbaik didapatkan pada sampel impregnasi 1:10 dengan penurunan gas buang CO, CO2, dan HC sebesar 52,05%, 56,80%, dan 73,96%. Berdasarkan hal tersebut, karbon aktif bonggol jagung dapat dijadikan alternatif adsorben dalam adsorpsi gas buang emisi kendaraan bermotor (sepeda motor). ......The transportation sector is the largest contributor to air pollution, where exhaust emissions of CO, CO2, and HC have a negative impact on health and the environment. Activated carbon can be used as an adsorbent for exhaust gases of motor vehicles (motorcycles). Corncob has the potential to be used as a raw material for making activated carbon because it has a high lignocellulose content. The manufacture of corncob activated carbon was carried out through the preparation and dehydration stage, the first chemical activation using a 20% w/v KOH solution with a sample ratio to a 1:4 solution for 24 hours, carbonization at a temperature of 500℃ for 2 hours and sifted with a size of 60 mesh, followed by the second chemical activation using a KOH variation of 1% w/v, 3% w/v, and 5% w/v with the same ratio and time as the first chemical activation. The samples obtained were then activated by physics using N2 gas of 0.15 NL/min at a temperature of 600℃ for 1 hour. The activated carbon obtained, then impregnated using a solution of MgO 1 M with variations in the ratio of sample mass to solution volume are 1:5, 1:10, and 1:15. The two-stage chemical activation process has an effect on enlarging the characterization of iodine produced, while mgo impregnation will decrease the characterization of the iodine produced and increase the effectiveness of exhaust gas absorption. The sample with the best iodine characterization was obtained in sample AK2F 5% surface area of 1142.77 m2 /gr, while the sample with the best exhaust gas reduction effectiveness was obtained in impregnatation samples of 1: 10 with a decrease in CO, CO2, and HC exhaust gases by 52.05%, 56.80%, and 73.96%. Based on this, corncob activated carbon can be used as an alternative adsorbent in the adsorption of exhaust gas emissions from motor vehicles (motorcycles).
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library