Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 30 dokumen yang sesuai dengan query
cover
Anton Mulia
Abstrak :
Di dalam campuran perkerasan lentur, untuk mendapat durabilitas yang tinggi, salah satu karakteristik campuran yang sangat mendukung adalah besarnya kandungan rongga udara dalam campuran (air voids). Besarnya rongga udara dalam campuran ditentukan oleh kepadatan campuran akibat volume agregat dan volume aspal (diwakili oleh tebal selimut/film thickness yang menyelimuti agregat). Semakin besar atau kecil kandungan rongga udara dalam campuran membuat semakin cepat dan besar kerusakan akibat air dan udara. Melihat pentingnya factor kandungan rongga udara, maka dalam skripsi ini akan diteliti bagaimana mendapatkan besar rongga udara yang diinginkan dalam campuran serta hubungannya dengan karakteristik campuran. Untuk mendapatkan besar rongga udara digunakan pendekatan simulasi dengan memodelisasi agregat. Salah satu asumsi penting dalammodelisasi ini adalah agregat dianggap berbentuk bola dengan diameter disesuaikan dengan besar lubang saringan dari gradasi yang digunakan. Setelah menganalisis simulasi dan mendapatkan formula campuran maka dilakukan pengecekan dengan tes di laboratorium apakah menghasilkan rongga udara yang diinginkan serta dilakukan uji marshall agar mendapat nilai karakteristik campuran. Pengujian menggunakan jenis aspal pen 60/70 pertamina dan aspal gilsonite-6. Kesimpulan setelah melakukan tes laboratorium dan menganalisa adalah: didapatnya korelasi besar rongga hasil simulasi dengan hasil lab agar formula hasil simulasi dapat digunakan; Semakin besarnya rongga yang dihasilkan jika penetrasi aspak semakin kecil/gj. Aspal semakin besar; Tidak terjadinya perubahan signifikan pada gradasi jiga digunakan input gradasi penerus; Dan diperolehnya syarat besar rongga hasil penelitian ini yaitu 4 - 6.3% untuk aspal pen 60/70 dan 4.69 - 9.74% untuk aspal gilsonite-6 dengan gradasi spek. IV nilai tengah (Bina Marga/Dep. Pekerjaan Umum).
Depok: Fakultas Teknik Universitas Indonesia, 2002
S34774
UI - Skripsi Membership  Universitas Indonesia Library
cover
Samuel Christian Giovanni
Abstrak :
[ABSTRAK Pada aplikasinya, konstruksi jalan masih memiliki banyak kelemahan antara lain mudah rusak pada saat terdapat genangan air sehingga akan memperpendek umur pakai jalan. Pada penelitian ini akan dilakukan modifikasi dari bitumen yang merupakan bahan utama pembuatan jalan dengan cara penambahan High Density Polyehtylene (HDPE) dan liginin pada campuran bitumen pen 60/70. Hal ini dapat menurunkan nilai penetrasi sehingga menjadikan bitumen lebih keras dan tahan ketika diberikan beban kendaraan yang berulang, meningkatkan titik lembek, dan menurunkan daktilitas. Selain itu, penambahan lignin sebagai coupling agent dapat meningkatkan kompaktibilitas antara HDPE dengan bitumen karena lignin yang memiliki gugus polar dan non-polar. Kadar lignin yang digunakan yaitu 0,1%, 0,3%, dan 0,5%. Selain itu, penelitian ini juga ingin mengetahui pengaruh temperatur proses yaitu 140˚C, 160˚C dan 180˚C dan waktu pencampuran yaitu 15, 30, dan 45 menit terhadap sifat bitumen hasil modifikasi. Untuk itu dilakukan pengujian mekanik dan karakterisasi campuran untuk melihat kekuatan dari bitumen dan kompatibilitas antara bitumen, HDPE, dan lignin. Pengujian dilakukan melalui uji daktilitas, penetrasi, dan titik lembek. Sedangkan, karakterisasi dilakukan dengan menggunakan Fourier Transform Infrared (FTIR), Thermo Gravimetric Analyzer (TGA), dan Differential Scaning Calorimetry (DSC). Dari hasil pengujian menunjukkan semakin tinggi kadar dari liginin dan semakin tinggi temperatur proses yang digunakan maka semakin tinggi juga kekuatan bitumen modifikasi dalam menahan beban serta semakin tinggi ketahanan termalnya. Kompatibilitas yang baik didapat pada penambahan lignin 0,5% dan temperatur proses 180&#deg;C.
ABSTRACT In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration?s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180°C.;In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration?s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180oC., In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration’s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180oC.]
Depok: Fakultas Teknik Universitas Indonesia, 2016
S61894
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syaukat Rafifidhiya
Abstrak :
ABSTRAK
Bitumen termodifikasi polimer telah banyak diminati sebagai bahan pengeras jalan. Namun, kestabilan bitumen termodifikasi masih dirasa kurang sehingga dilakukan penelitian lanjutan untuk menemukan kompatibiliser yang sesuai kebutuhan, salah satunya lignin termodifikasi. Penelitian tentang bagaimana pengaruh dari lignin termodifikasi terhadap sifat mekanis bitumen termodifikasi polimer polymer modified bitumen-PMB dilakukan dengan mencampurkan ketiga komponen tersebut dengan hot melt mixing dengan komposisi lignin termodifikasi 0,1 , 0,3 , dan 0,5 serta suhu pencampuran 160 oC, 180 oC, dan 200 oC. Dan waktu pencampuran 15, 30, dan 45 menit. Penelitian dengan menggunakan STA, FTIR, sudut kontak dengan metode sessile drop, FE-SEM, dan uji mekanis pada daktilitas dan penetrasi menunjukkan penambahan lignin termdofikasi memengaruhi sifat mekanis PMB dengan menurunkan penetrasi hingga 33 dan daktilitas PMB hingga 68 . Selain itu, sifat termal juga terpengaruh dengan meningkatnya titik leleh hingga 5 oC seiring dengan penambahan konsentrasi lignin termodifikasi. Suhu dan waktu pencampuran memengaruhi distribusi dan dispersi campuran dengan indikasi peningkatan intensitas ikatan hidrogen
ABSTRACT
Polyethylene Modified Bitumen PMB has been developed to give an alternative in material selection on pavement engineering. However, PMB has no good stability especially on wet weather. Many compatibilisers has been developed to overcome this problem, and one of them is urethanized ndash modified lignin. HDPE, bitumen, and modified lignin has mixed on hot melt mixing with varied concentration of modified lignin, temperature of mixing, and mixing time. Concentration of modified lignin vary from 0,1 , 0,3 to 0,5 , temperature of mixing varied from 160 oC, 180oC, dan 200 oC and time of mixing varied from 15,30, dan 45 minutes. Observation with STA, FTIR, contact angle with sessile drop method, FE SEM, and mechanical test on ductility and penetration show that modified lignin effect on mechanical and thermal properties of PMB. The effect has been indicated by decreasing of value of penetration to 67 and ductility of PMB to 31 and increasing the melting point up to 5 oC. Beside that, temperature and time of mixing effect the distribution and dispersion on mixing.
2017
S67219
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nofal Lazuardi
Abstrak :
ABSTRAK
Indonesia adalah negara penghasil sampah plastik terbesar kedua di dunia setelah China pada tahun 2010 dimana polipropilena adalah salah satu jenis kantong plastik yang banyak digunakan dan sangat non-biodegradable. Selain itu indstri kertas Indonesia banyak menghasilkan limbah pulp lignin yang dimana lignin memiliki sifat sebagai surfaktan dan sifat ini dapat dimodifikasi lebih lanjut. Disisi lain, Indonesia sedang sangat mempercepat pembangunan infrastruktur terutama jalan raya dan membutuhkan bitumen dengan kualitas baik. Sifat fisik bitumen dapat dimodifikasi dengan mencampurkan polimer membentuk polymer modified bitumen PMB . Penelitian ini membahas pengaruh pencampuran bitumen dengan limbah plastik PP sebagai zat pengisi dan lignin termodifikasi sebagai surfaktan penstabil campuran, diharapkan dapat dihasilkan produk bitumen yang memiliki nilai mekanis lebih baik. Pencampuran dilakukan dengan menggunakan alat hot melt mixer. Komposisi lignin termodifikasi yang digunakan adalah 0.1 , 0.3 , dan 0.5 . Suhu pengadukan dilakukan pada 160oC, 180oC, dan 200oC. Waktu dilakukan selama 15, 30, dan 45 menit. Untuk mengkarakterisasi hasil produk, dilakukan pengujian FE-SEM, FT-IR, STA, Sessile Drop Test, Uji Daktilitas, dan Uji Penetrasi. Dari hasil pengujian menunjukkan bahwa lignin termodifikasi memiliki kompabilitas yang lebih baik dari lignin murni. Karakterisasi produk menunjukkan bahwa semakin tinggi konsentrasi lignin termodifikasi maka sifat mekanik PMB semakin baik, suhu pengadukan meningkatkan dispersi dan distribusi plastik didalam matriks bitumen, dan waktu pengadukan paling efektif adalah 30 menit.
ABSTRACT
Indonesia is the second biggest plastic producer in the world after China in 2010 and polypropylene is one of the most used platic that is non biodegradable. Futhermore, Indonesia paper industry produce many paper waste known as pulp lignin . Lignin can be used as coupling agent and be modified to improve the properties. On the other hand Indonesia accelerate the infrastructure development especially roadways and hence need high quality bitumen. Bitumen physical properties can be enhanced by the addition of polymer, creating polymer modified bitumen PMB . By mixing polypropylene plastic waste as filler and modified lignin as surfactant to bitumen, the bitumen properties expected to be improved. The mixing done hot melt mixer. The composition of modified lignin used were 0.1 , 0.3 , and 0.5 . The mixing temperature were 160oC, 180oC, and 200oC, and the processing time were 15, 30, and 45 minutes. Characterization the properties of PMB used FE SEM, FT IR, STA, Sessile Drop Test, Ductility Test, and Penetration Test Method. The test results show that modified lignin has better compatibilty than normal lignin. More modified lignin added to PMB, More the properties improved. Mixing temperature at 200oC has better dispertion and distribution of filler than 180oC, and the optimum time of mixing is 30 minutes.
2017
S67217
UI - Skripsi Membership  Universitas Indonesia Library
cover
Surrey: Shell Bitumen U.K., 1990
R 620.196 SHE
Buku Referensi  Universitas Indonesia Library
cover
Muhammad Hanif Ainun Azhar
Abstrak :
Limbah plastik kemasan merupakan salah satu jenis limbah plastik yang banyak dihasilkan oleh masyarakat Indonesia serta jarang sekali untuk diolah kembali. Industri pembuatan kertas di Indonesia yang besar juga menghasilkan limbah berupa lindi hitam yang mengandung lignin di dalamnya. Maka dari itu diperlukan upaya baru untuk mengurangi kedua permasalahan limbah ini, yaitu pemanfaatan limbah plastik multilayer dari kemasan mi instan serta lignin hasil dari pengolahan lindi hitam sebagai modifier bagi bitumen sehingga menghasilkan polymer modified bitumen (PMB). Bitumen akan dimodifikasi oleh limbah plastik multilayer dengan bantuan lignin sebagai compatibilizer. Pembuatan PMB dilakukan dengan metode hot melt mixing dengan penambahan limbah plastik multilayer sebanyak 4 %berat serta penambahan lignin yang divariasikan sejumlah 0,1 %berat; 0,3 %berat; dan 0,5 %berat. Proses akan dilakukan dengan variasi temperatur dari 170°C, 180°C, dan 190°C selama 30 menit. Sampel kemudian diuji untuk mengetahui kandungan, morfologi, serta sifat termalnya dengan menggunakan FTIR, SEM, serta TGA. Hasil pengujian menunjukkan bahwa penambahan lignin meningkatkan stabilitas termal dari campuran PMB serta temperatur proses dapat meningkatkan distribusi dari partikel limbah plastik multilayer dalam PMB.
Plastic packaging waste is one of the most discarded plastic product in Indonesia and it is very rarely got reused. Indonesia also produces so much paper, which create waste called black liquor that contains lignin. Hence, new effort is needed to reduce these waste problems, one of them is to use multilayer plastic waste in the form of instant noodle package and lignin from black liquor as modifier for bitumen, creating polymer modified bitumen (PMB). Bitumen is modified by multilayer plastic waste with the help from lignin as compatibilizer. PMB is made using hot melt mixing method, with the addition of multilayer plastic waste as many as 4 wt% and lignin varied from 0,1 wt%; 0,3 wt%; to 0,5 wt%. The process is done with varied temperature, from 170°C, 180°C, to 190°C for 30 minutes. Samples then tested to see their content, morphology, and thermal property by using FTIR, SEM, and TGA. The result of these tests concluded that the addition of lignin to PMB increase the thermal stability of the mixture and the increasing of process temperature can increase plastic waste distribution quality in the mixture.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yermia Andri Prawira
Abstrak :
Penelitian ini bertujuan mencari solusi permasalahan seperti kerusakan aspal, pencemaran lingkungan oleh limbah plastik dan lignin. Melalui studi literatur, ditemukan plastik dapat menguatkan sifat aspal yang lemah terhadap air. Namun, aspal dan plastik tidak kompatibel karena sifat aspal yang hidrofilik dan sifat plastik yang hidropobik. Oleh karena itu, lignin yang mempunyai kedua sifat tersebut digunakan sebagai coupling agent. Bitumen pen 60/70 dimodifikasi dengan menambahkan plastik Polipropilena PP dan High Density Polyethylene HDPE lalu dicampur melalui metode Hot Melt Mixing. Variabel tetapnya ialah waktu, temperatur proses, dan putaran alat pengaduk yaitu 30 menit, 180oC, dan 60 rpm. Variabel bebasnya ialah komposisi campuran PP yaitu 3wt, 4wt, 5wt, HDPE yaitu 5wt, 6wt, 7wt dan lignin. Putaran pertama proses sampel tidak ditambahkan lignin, putaran kedua sampel ditambahkan lignin 0,3wt. Setelah itu, hasil proses campuran yang disebut Polymer Modified Bitumen PMB, dikarakterisasi. Karaterisasi sifat kimia campuran menggunakan Fourier Transform Infrared FTIR, Thermo Gravimetric Analyzer TGA, dan Differential Scanning Calorimetry DSC dan karakterisasi mekanik sifat penetrasi, daktilitas, dan titik lembek. Hasil pengujian menunjukkan Polyblend PP/HDPE menambah sifat mekanik bitumen, lignin meningkatkan kompatibilitas antara bitumen dan plastik, serta diperlukan coupling agent tambahan untuk menyatukan antar plastik PP dan HDPE yang viskositasnya berbeda. ......This study aims to find solutions to problems such as damage to the asphalt, pollution of environment by plastic waste and lignin. Through literature, discovered the plastic can strengthen the weak nature of the asphalt to water. However, asphalt and plastics are not compatible because of the nature of the asphalt hydrophilic and hydrophobic properties of the plastic. Therefore, lignin which has both these properties is used as a coupling agent. 60 70 bitumen modified by adding plastic Polypropylene PP and High Density Polyethylene HDPE and then mixed with Hot Melt Mixing method. Fixed variable is time, process temperature, and mixer rotation which are 30 minutes, 180 C, and 60 rpm. The independent variables are the composition of the mixture of PP i.e. 3wt, 4wt, 5wt, HDPE i.e. 5wt, 6wt, 7wt and lignin. The first round of the sample is not added lignin, the second round of sample was added lignin 0,3wt. After that, the process results, a mixture called Polymer Modified Bitumen PMB, characterized. Chemical properties characterization of the mixture using a Fourier Transform Infrared FTIR, Thermo Gravimetric Analyzer TGA, and Differential Scanning Calorimetry DSC and the characterization of the mechanical properties of penetration, ductility, and the softening point. The test results showed polyblend PP HDPE adds to the mechanical properties of bitumen, lignin improve the compatibility between bitumen and plastic, as well as additional coupling agent is required to bring together between PP and HDPE plastic which different viscosity.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65605
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lumban Gaol, Simon Andreas
Abstrak :
Bitumen sebagai bahan baku utama dalam pembuatan aspal jalan sangat dibutuhkan dalam peningkatan pembangunan infrastruktur di Indonesia. Peningkatan kualitas bitumen dan pemanfaatan limbah plastik multilayer menjadi latar belakang penelitian ini. Modifikasi bitumen dengan penambahan limbah plastik multilayer disebut Polymer Modified Bitumen (PMB). Tujuan penelitian ini untuk mengetahui pengaruh penambahan limbah plastik multilayer sebagai pengisi campuran bitumen. Metode yang digunakan untuk mencampurkan material ini adalah hot melt mixing. Variabel bebas yang digunakan adalah temperatur pengadukan 170 0C, 180 0C, dan 190 0C; dan komposisi limbah plastik 3%, 4%, dan 5%. Karakterisasi yang dilakukan adalah FTIR, TGA, uji sudut kontak dan SEM. Hasil penelitian menunjukkan tidak adanya ikatan kimia antara limbah plastik multilayer dan bitumen, dan pengaruh peningkatan kadar limbah plastik multilayer dalam meningkatkan sifat dispersi campuran dan menurunkan stabilitas termal campuran. ......Bitumen as main components of asphalts production was essential for the development of Infrastructure in Indonesia. Quality upgrade of bitumen and alternative usage of plastik waste is the background of this study. Bitumen modification by adding multilayer plastic waste is called Polymer Modified Bitumen (PMB). Purpose of this study is to see the effect of multilayer plastic waste addition as a filler in bitumen mixture. The method used to mix all the materials is hot melt mixing. Independent variable used was mixing temperature 170 0C, 180 0C, and 190 0C; and plastic waste composition 3%, 4%, dan 5%. The test used to view the characteristics was FTIR, TGA, contact angle test and SEM. The result of this study shows no chemical bonding between multilayer plastic waste and bitumen, and the effect of rising the compositon of multilayer plastc waste to increase filler size and decrease thermal stability of mixture.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Taufik Hidayat
Abstrak :
Bahan anti karat (pelindung organik) yang digunakan sebagai pelapis untuk melindungi bagian body kendaraan bermotor, dibuat dengan proses yang sederhana yaitu dengan memanaskan bitumen sampai titik leleh dan menambahkan filler (talk) dan pelarut (toluena) dalam jumlah tertentu. Proses di atas memiliki beberapa kekurangan seperti pemborosan material dan membahayakan pekerja oleh karena itu dilakukan perubahan proses. Pada proses baru bitumen tidak dipanaskan melainkan langsung dilarutkan baru kemudian filler (talk) dimasukan dan diadulc. Untuk mendapatkan karakteristik yang minimal sama dengan proses lama, dilalculcan dengan mengvariabel jumlah lallf. Untuk maksud pemasaran yang lebih luas, karalcteristik produk proses baru selaln dibandinglcan dengan produk proses lama (stahl kote) juga dibandingkan dengan produk impor (dunlop). Hasil penelitlan menunjukan bahwa perubahan proses tidak mempengaruhi daya lekat, pelepuhan dan pembentukan pin hole namun dapat menurunkan ketahanan korosi (meningkatkan lebar karaaj, yaitu dari 2,5 mm menjadi 3,5 mm (untuk waktu elcspose 48 jam) dan dari 6,5 mm menjadi 7 mm (untuk waktu ekspase 144 jam). Selain itu juga menurunlcan lcetahanan abrasi (menurunkan jumlah pasir yang dibutuhkan untuk mengikis I mils tebas, yaitu dari 0,13 liter/mikron menjadi 0,086 lirerv'mikron. Pengaruh penambahan talk pada komposisi pelindung organik yang ditelili, ternyata menurunlcan kerahanan korosi, abrasi dan pembentulcan pin hole namun tidak mempengaruhi daya lekat. Karakteristik produk impor (dunlop). seperti ketahanan korosl, abrasi dan pembentukan pin hole lebih bail: dari baik produk dengan proses lama maupun baru. Sedangkan untuk daya lekatnya relatif sama. Adapun pelepuhan yang lergfadi bukan sebagai pengaruh perubahan proses maupun penambahan talk, namun semata-rnata hanya karena adanya kehilangan daya lekat pelindung organik dengan permukaan logamnya pada beberapa bagian daerah tertentu.
Depok: Fakultas Teknik Universitas Indonesia, 1997
S47845
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusra Yuliana
Abstrak :
ABSTRAK
Metode pemisahan antara pelarut dengan bitumen yang saat ini digunakan dalam industri aspal dari aspal alam menimbulkan banyak permasalahan sehingga perlu dikembangkan metode pemisahan yang lebih ramah lingkungan dan menggunakan konsumsi energi yang rendah yaitu dengan menggunakan membran. Penelitian ini memisahkan kerosin dengan bitumen pada ekstraksi aspal alam menggunakan membran hollow fiber polipropilen. Tujuan penelitian ini adalah mendapatkan kerosin dengan konsentrasi bitumen paling kecil sehingga kerosin dapat digunakan kembali sebagai pelarut. Penelitian ini dilakukan dengan 3 variasi, yaitu pressure drop, laju alir larutan dan volume pelarut. Perbedaan konsentrasi awal dengan konsentrasi bitumen di permeat yang terbesar yaitu sebesar 0,01197 gr/mL didapatkan pada rasio volume pelarut per berat bitumen yang paling kecil yaitu 60 mL/gr, sedangkan konsentrasi bitumen di permeat terkecil sebesar 0,0046 gr/mL didapatkan pada laju alir yang paling besar yaitu 300 mL/menit serta sebesar 0,0034 gr/mL pada pressure drop yang paling kecil yaitu 3 mmHg. Persamaan yang menyatakan hubungan volume pelarut dengan konsentrasi bitumen di permeat adalah , hubungan antara laju alir dengan konsentrasi bitumen di permeat adalah , hubungan antara pressure drop dengan konsentrasi bitumen di permeat adalah dengan Y adalah konsentrasi bitumen di permeat, X1 adalah volume pelarut, X2 adalah laju alir, dan X3 adalah pressure drop.
ABSTRACT
Method of separation between solvent with bitumen that is currently used in asphalt industry of natural asphalt raises many issues so more environmentally friendly separation method and uses low energy consumption need to be developed by using membrane. This study separates kerosene with bitumen on extraction of natural asphalt using polypropylene hollow fiber membranes. The purpose of this study is to get kerosene with a small concentration of bitumen so that kerosene can be reused as a solvent. This study was conducted with three variations, namely the pressure drop, flow rate and volume of the solvent. The largest differences of initial concentration and the bitumen concentration in permeate is equal to 0.01197 g/mL that obtained on the smallest solvent volume ratio by weight of bitumen of 60 mL/g, while the smallest bitumen concentration in permeate at 0.0046 g/mL was found in the greatest flow rate of 300 mL/min and at 0.0034 g/mL was found in the smallest pressure drop of 3 mmHg. The equation that expresses the relation of solvent volume ratio with bitumen concentration in the permeate is , the relation of flow rate with bitumen concentration in the permeate is , the relation of pressure drop with the bitumen in the permeate is with Y is bitumen concentration in permeate, X1 is the volume of solvent, X2 is the flow rate, and X3 is the pressure drop.
2015
S59896
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>