Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 37 dokumen yang sesuai dengan query
cover
Abstrak :
Kebutuhan bahan bakar yang tak dapal diperbaharui (fosil) di Indonesia, dari tahun ke tahun cenderung meningkat. Di perkirakan pada tahun 2004, Indonesia akan mcnjadi negara pengimpor minyak mentah. Induslri perkebunan kelapa sawil di Indonesia rnerupakan salah satu industri yang terbesar ke dua di dunia setelah Malaysia. Dengan menggunakan pemilihan bibit unggul dan ekstensifikasi lahan perkebunan, diperkirakan pada tahun 2010, Indonesia akan menjadi negara penghasil terbesar kelapa sawit. Dengan kondisi ini. limbah yang dihasilkan dari industri _i uga diperkirakan akan menjadi masalah yang cukup besar. Limbah industri perkebunan kelapa sawit antara lain yailu daun, pelepah, cangkang atau tcmpurung, fiber atau scral dan tandan kosong sawit.

Untuk mendapatkan bio-oil yaitu mclalui proses pirolisis cepal dari pclepah kelapa sawil, dcngan temperatur sekitar 400“ - 650° C. Produk uap yang dihasilkan kc-:mudian dikondensasi pada suhu sekitar 16° C. dengan menggunakan es balu sebanyak 6 kg atau dry ice scbanyak 4 kg. Produk cair yang, didapat kemudian dibandingkan hasilnya dengan bio-oil dari umpan kayu pinus dan bahan bakar diesel.

Perbandingan karakteristik dari bio-oil dengan umpan pelepah kelapa sawit, bio-oil dengan umpan kayu pinus dan bahan bakar solar, adalah : 0 Viskositas = 2,592 CSI ; 7 cSt ; dan 4 cSt. ¢ Densitas = 1,0847 g/ml, ; 1,2 gfmL ; dan 0,85 gf'mL. » pH=2,17 ; 2,5 ; dan5. 0 Nilai kalor = 6,910 MJfkg ; 16,5 Mlfkg ; dan 42,3 MJ/kg. Kemudian untuk gugus fuftgsi kimia penyusunnya sama dengan gugus fungsi dari bio-oil umpan kayu pinus.
Fakultas Teknik Universitas Indonesia, 2004
S49432
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haisa Yuana
Abstrak :
Pengembangan terhadap pemanfaat biomassa sebagai sumber bahan bakar alternatif harus dilakukan, mengingat bio-oil yang dihasilkan dari pirolisis biomassa masih mengandung kadar senyawa oksigenat yang tinggi, yang menyebabkan bio-oil bersifat korosif, memiliki nilai kalor rendah, viskositas yang tinggi dan kurang stabil. Penggunaan limbah plastik sebagai bahan baku tambahan menjadi salah satu metode alternatif yang dapat menaikkan nilai kalor bio-oil, menurunkan sifat korosivitas, menurunkan viskositas dan meningkatkan kestabilannya. Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan limbah plastik dalam meningkatkan kualitas bio-oil yang dihasilkan dari pirolisis batang jagung sehingga dapat menghasilkan bio-oil yang mempunyai kadar senyawa oksigenat yang rendah dan dapat digunakan sebagai biofuel. Metode yang digunakan dalam penelitian ini adalah slow co-pyrolysis, dengan jenis reaktor fixed bed. Bahan baku yang digunakan adalah batang jagung dan limbah plastik HDPE dan PP. Slow co-pyrolysis dilakukan dengan temperatur akhir 5000C, laju pemanasan 50C/menit, laju N2 sebesar 750 ml/menit, dan waktu penahan 30 menit. Karakterisasi dilakuakn hanya terhadap fraksi minyak (bio-oil) yang mencakup analisis Gas Cromatrograph Mass Spectrometer (GC-MS), uji viskositas dan uji pH. Dengan penambahan plastik sebanyak 75%berat, kandungan senyawa non-oksigenat pada bio-oil mencapai 47,17 % sedangkan kandungan senyawa oksigenat 52,83%. Penggunaan plastik HDPE menghasilkan yield bio-oil yang lebih tinggi yaitu mencapai 28,05 %berat, dibandingkan dengan plastik PP yang mencapai 25,85 %berat. Penambahan limbah plastik menghasilkan bio-oil dengan pH 5 dan viskositas 4,2 cSt yang menyebabkan bio-oil menjdai tidak korosif dan lebih mudah menglair sehingga dapat dimanfaatkan lebih lanjut sebagai bahan bakar. ......The development of biomass utilization for alternative fuel source needs to be done, considering the bio-oil produced from biomass pyrolysis still containts high level of oxygenate compounds, which causes the bio-oil to be corrosive, has a low heating value, and less stable. The use of plastic waste for bio-oil production is one of the alternative methods that can increase the heating value of bio-oil by reducing the oxygenates compounds on it. This study aims to determine the effect of using plastic waste to improve the quality of bio-oil from corn cob, so that it has a lower oxygenate compounds. The method used in this study is slow co-pyrolysis, using fixed bed reactor. The raw materials are corn cob and HDPE and PP plastic wastes. Slow co-pyrolysis is done with final temperatur of 5000C, heating rate 50C/min, N2 flow rate 750 ml/min, and pirolysis time 30 minutes. The bio-oil oil produced will be characterized using Gas Chromatpgraph Mass Spectometer (GC-MS), viscosity, and pH. With the addition of 75 %wt plastics, non-oxygenates compound in bio-oil reach 47,17 while the oxygenates compound are reduced to 52,33 %wt. The addition of HDPE plastic waste produces hihger bio-oil yield (28,05 %wt) than PP plastic waste (25,85 %wt). The bio-oil produced from biomass and plastic wastes become less corrosive ( pH 5) and viscos (4,2 cSt), so that it can be use as alternative fuel source.
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59086
UI - Skripsi Membership  Universitas Indonesia Library
cover
Miranda Meidistira
Abstrak :
Sampah daun dapat dikonversi menjadi produk yang lebih berguna dengan menggunakan beberapa proses, salah satu prosesnya adalah menggunakan proses pirolisis. Proses pirolisis dapat dilakukan dengan membutuhkan beberapa parameter, yaitu bahan baku, suhu, waktu tinggal, dan juga laju pemanasan. Pada proses pirolisis, biomassa mengalami proses penyusutan. Pada penelitian ini, variabel yang digunakan adalah suhu, laju alir gas, dan rasio kombinasi katalis dengan tujuan melihat hubungan variabel-variabel tersebut dengan proses penyusutan dan produk pirolisis yang dihasilkan. Proses pirolisis menghasilkan produk berupa produk cair, gas, dan padat. Dari hasil penelitian, produk padatan kemudian dikarakterisasi menggunakan analisis Fourier Transform Infrared Spectroscopy (FTIR) dan dihasilkan bahwa terdapat beberapa perbedaan yang terdapat pada padatan pirolisis katalitik dan non-katalitik dan terdapat perbedaan intensitas pada peak-peak spektra yang menunjukan adanya penyusutan dari struktur penyusun biomassa. Produk cair yang terbentuk dianalisis dengan menggunakan alat Gas Chromatography – Mass Spectroscopy (GC-MS) dan didapatkan bahwa produk cair memiliki kandungan oksigenat dan non-oksigenat di dalamnya. Kandungan oksigenat dan non-oksigenat yang berada dalam produk cair dilakukan dengan menggunakan bantuan katalis ZSM-5 (Zeolite Socony Mobil-5) dan YSZ (Yttria Stabilized Zirconia). Katalis ZSM-5 berfungsi sebagai katalis asam yang dapat meningkatkan kandungan hidrokarbon dan katalis YSZ berfungsi untuk meningkatkan produksi non-oksigenat pada produk bio-oil yang dihasilkan. Produk distribusi yang dihasikan dengan proses katalitik memiliki produk distribusi yang lebih beragam. Penambahan katalis juga menurunkan energi aktivasi yang digunakan sebesar 5,41%.
Leaf waste can be converted into more useful products by using several processes, one of which is using a pyrolysis process. The pyrolysis process can be carried out by requiring several parameters, namely raw material, temperature, residence time, and also the rate of heating. In the pyrolysis process, biomass undergoes a shrinkage process. In this study, the variables used are temperature, gas flow rate, and catalyst combination ratio with the aim of seeing the relationship of these variables with the shrinkage process and the resulting pyrolysis product. The pyrolysis process produces products in the form of liquid, gas and solid products. From the results of the study, solid products were then characterized using Fourier Transform Infrared Spectroscopy (FTIR) analysis and it was found that there were some differences found in catalytic and non-catalytic pyrolysis solids and there were differences in intensity in the spectral peaks that showed shrinkage of biomass. The liquid product formed was analyzed using the Gas Chromatography - Mass Spectroscopy (GC-MS) tool and it was found that the liquid product contained oxygenate and non-oxygenate in it. Oxygenate and non-oxygenate content in liquid products is increased by using ZSM-5 catalysts (Zeolite Socony Mobil-5) and YSZ (Yttria Stabilized Zirconia). ZSM-5 catalyst serves as an acid catalyst that can increase the hydrocarbon content and the YSZ catalyst serves to increase the production of non-oxygenate in the resulting bio-oil product. Distribution products produced by catalytic processes have a more diverse distribution of products. The addition of catalysts also reduced the activation energy used by 5.41%.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Romy Dzaky Amin Amany
Abstrak :
Biomassa merupakan salah satu sumber energi terbesar setelah batubara, minyak bumi, dan gas alam. Saat ini biomassa digunakan untuk berbagai pemanfaatan, salah satunya adalah sebagai sumber dari asap cair, atau sering disebut dengan bio-oil. Bio-oil dapat diproduksi dengan berbagai metode. Metode yang cukup sering digunakan adalah pirolisis. Abdullah et al telah melakukan penelitian mengenai pirolisis biomassa menggunakan fixed bed reactor tanpa menggunakan gas penyapu [1]. Penelitian tersebut menyatakan bahwa biomassa berupa kayu kamper dapat memproduksi fraksi produk liquid sebanyak 46%wt, ketika dipirolisis dengan temperatur maksimum 500°C dan dengan pemanasan ulang di bagian zona reaksi hingga 200°C menggunakan heater 1500W. Pirolisis tersebut menggunakan Double Pipe Heat Exchanger sebagai unit Liquid Collection System (LCS). Penelitian ini akan membahas bagaimana karakteristik pengkondensasian uap yang terjadi pada LCS tersebut menggunakan program simulasi COMSOL Multiphysics. Simulasi dalam COMSOL Multiphysics akan menggunakan desain 2D axisymmetric dengan modul simulasi Fluid Flow dan Heat Transfer in Fluid. Uap pirolisis akan dianggap sebagai senyawa tunggal yang merepresentasikan campuran senyawa hidrokarbon yang terkandung di dalam bio-oil sebagaimana dimodelkan oleh Hallet dan Clark [2]. Hasil dari simulasi ini menunjukkan bahwa kondensasi yang terjadi di dalam LCS yang digunakan oleh Abdullah et al terjadi secara konveksi natural dengan aliran laminar. Selain itu, hasil dari simulasi ini juga menunjukkan bahwa sebanyak ~16.93%wt uap pirolisis yang seharusnya bisa dikondensasi pada akhirnrya tidak dapat dikondensasi di Outlet LCS. Agar uap pirolisis dapat terkondensasi seluruhnya, maka harus dilakukan optimasi dengan cara memanjangkan LCS hingga 1.15 m dan menggunakan air pendingin dengan temperatur 8°C
ABSTRACT
Biomass is one of the largest energy sources in the world after coal, crude oil, and natural gas. Lately, biomass already used for many purposes, one of which is as a source of liquid smoke, or often called as bio-oil. Bio oil can be produced from various method. One of the most popular method is pyrolysis. Abdullah et al already conducted a research on producing bio-oil from biomass using fixed bed reactor without sweeping gas [1]. The study finds that camphor wood that was used as the feedstock will produce about 46%wt liquid yield during pyrolysis with maximum temperature at 500°C using 1500W heater. In that study, Abdullah et al also reheated the reaction zone until 200°C. The study was using Double Pipe Heat Exchanger as a Liquid Collection System (LCS) unit. This study will focus on the characteristics of condensation phenomenon that happens in that LCS unit using simulation method. This study uses COMSOL Multiphysics as the simulation program. Simulation was conducted using Fluid Flow and Heat Transfer in Fluid Physics. The pyrolysis vapor was considered as a single compound that represents the pyrolysis vapor mixture modeled by Hallet and Clark [2]. The result of this simulation shows that the condensation that occurred inside the LCS that used by Abdullah et al was happened because of natural convection with laminar flow. The result also shows that at the Outlet LCS, ~16.93%wt of the condensable gas was wasted with other Non-Condensable Gases. To achieve fully condensed pyrolysis vapor, the LCS system must be optimized by lengthen the LCS until 1.15 m and using water that have 8°C inlet temperature.

Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
This research has the effort to develop catalyst for steam reforming of bio oil. The bio oil is liquid product that iv produced _from biomass pyrolysis. The reforming of bio oil produces hydrogen gas. The main challenge in reforming of organic compound especially aromatic, in bio oil as phenol, is carbon formation at the catalyst surface resulted in uncomplete reaction. The catalyst formulation resulted is expected to have high resistance to catalyst deactivation because of carbon formation. Beside that, it is expected too to have high stability and activity, compared to commercial nickel based catalyst. For those purposes, research of steam reforming of m-cresol in bench scale has been done. m-cresol is one of phenol compounds in bio oil, that has stable properties, difficult to react and disturb the catalyst activity. The catalyst formulation used is Ru-Ni/MgO.La;O3.Al2O3 mixture. This research has succeed to develop catalyst of reforming from Ni-Ru metal combination that having the good stability and activity to reform m-cresol. The best catalyst composition resulted is 2%Ru-15%Ni. In Ni and Ru catalyst combination, Ni catalyst is the mainly active component in reforming of oxygenated aromatic compound in bio oil The Ru catalyst function is to increase Ni metal dispersion on support, by then increasing the catalyst stability.
Jurnal Teknologi, Vol. 20 (3) Maret 2006 : 215-220, 2006
JUTE-20-3-Sep2006-215
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Yosephine Merry Devina
Abstrak :
[ABSTRAK
Deposit ampas tebu di Indonesia yang mencapai 8,5 juta ton per tahun menjadikan biomassa ini potensial untuk dikembangkan sebagai pensubstitusi bahan bakar minyak berbasis crude oil. Gelombang mikro merupakan salah satu metode pemanasan yang lebih efisien untuk mempirolisis biomassa, karena metode ini memanfaatkan prinsip konversi energi dan partikel biomassa mengalami pemanasan volumetrik. Ampas tebu dipirolisis dengan variasi daya gelombang mikro sebesar 380, 620, dan 850 Watt dan variasi bio-char dalam umpan sebanyak 0, 10, dan 20%. Karakterisasi yang dilakukan meliputi profil suhu pirolisis, yield produk pirolisis, dan kandungan senyawa di bio-oil dengan metode GC/MS. Peningkatan daya gelombang mikro akan meningkatkan laju pemanasan dan suhu pirolisis ampas tebu, walaupun efeknya tidak terlalu signifikan jika umpannya tidak ditambahkan bio-char. Penambahan bio-char sebagai absorber gelombang mikro secara signifikan meningkatkan laju pemanasan dan suhu pirolisis ampas tebu. Yield bio-oil maksimum, yaitu 42,75 dan 42,40%, diperoleh pada laju pemanasan 805oC/menit dan suhu pirolisis 515oC serta laju pemanasan 59oC/menit dan suhu pirolisis 398oC. Kondisi operasi untuk memperoleh kedua parameter laju pemanasan dan suhu pirolisis tersebut adalah daya gelombang mikro sebesar 380 Watt dengan 20% kandungan bio-char di umpan serta daya gelombang mikro sebesar 850 Watt tanpa kandungan bio-char di umpan. Bio-oil yang diperoleh dari pirolisis ampas tebu yang umpannya mengandung bio-char ternyata mengandung lebih banyak senyawa non-oksigenat dan tidak mengandung PAH. Namun, senyawa non-oksigenat tersebut juga memiliki kandungan rantai karbon panjang (C22+) yang cukup tinggi.
ABSTRACT
Sugarcane bagasse waste in Indonesia reaching 8.5 million tons per year is potential to be developed as a substituent for petroleum-based fuel oil. Microwave is an efficient heating method for biomass pyrolysis, since this method utilizes the principle of energy conversion and biomass undergoes volumetric heating. Sugarcane bagasse was pyrolyzed at the microwave power variation of 380, 620, and 850 Watt and bio-char loading variation of 0, 10, and 20%. Characterizations were conducted on the pyrolysis temperature profile, pyrolysis products yield, and bio-oil content by GC/MS method. The microwave pyrolysis of sugarcane bagasse gave results that increasing microwave power would increase the heating rate and pyrolysis temperature, however this phenomenon was insignificant if the feed contained no bio-char. The addition of bio-char as microwave absorber in the feed significantly increased the heating rate and temperature pyrolysis. The highest bio-oil yields, i.e. 42.75 and 42.40%, were obtained at the heating rate of 805oC/min and pyrolysis temperature of 515oC and heating rate of 59oC/min and pyrolysis temperature of 398oC. Those pyrolysis heating rates and temperatures were achieved at the microwave power of 380 Watt with bio-char loading of 20% and the microwave power of 850 Watt with no bio-char loading. Bio-oil derived from the microwave pyrolysis of sugarcane bagasse which had no bio-char loading in fact contained more non-oxygenated compounds and less PAHs. However, those non-oxygenated compounds have a quite high content of long carbon chains (C22+).;Sugarcane bagasse waste in Indonesia reaching 8.5 million tons per year is potential to be developed as a substituent for petroleum-based fuel oil. Microwave is an efficient heating method for biomass pyrolysis, since this method utilizes the principle of energy conversion and biomass undergoes volumetric heating. Sugarcane bagasse was pyrolyzed at the microwave power variation of 380, 620, and 850 Watt and bio-char loading variation of 0, 10, and 20%. Characterizations were conducted on the pyrolysis temperature profile, pyrolysis products yield, and bio-oil content by GC/MS method. The microwave pyrolysis of sugarcane bagasse gave results that increasing microwave power would increase the heating rate and pyrolysis temperature, however this phenomenon was insignificant if the feed contained no bio-char. The addition of bio-char as microwave absorber in the feed significantly increased the heating rate and temperature pyrolysis. The highest bio-oil yields, i.e. 42.75 and 42.40%, were obtained at the heating rate of 805oC/min and pyrolysis temperature of 515oC and heating rate of 59oC/min and pyrolysis temperature of 398oC. Those pyrolysis heating rates and temperatures were achieved at the microwave power of 380 Watt with bio-char loading of 20% and the microwave power of 850 Watt with no bio-char loading. Bio-oil derived from the microwave pyrolysis of sugarcane bagasse which had no bio-char loading in fact contained more non-oxygenated compounds and less PAHs. However, those non-oxygenated compounds have a quite high content of long carbon chains (C22+)., Sugarcane bagasse waste in Indonesia reaching 8.5 million tons per year is potential to be developed as a substituent for petroleum-based fuel oil. Microwave is an efficient heating method for biomass pyrolysis, since this method utilizes the principle of energy conversion and biomass undergoes volumetric heating. Sugarcane bagasse was pyrolyzed at the microwave power variation of 380, 620, and 850 Watt and bio-char loading variation of 0, 10, and 20%. Characterizations were conducted on the pyrolysis temperature profile, pyrolysis products yield, and bio-oil content by GC/MS method. The microwave pyrolysis of sugarcane bagasse gave results that increasing microwave power would increase the heating rate and pyrolysis temperature, however this phenomenon was insignificant if the feed contained no bio-char. The addition of bio-char as microwave absorber in the feed significantly increased the heating rate and temperature pyrolysis. The highest bio-oil yields, i.e. 42.75 and 42.40%, were obtained at the heating rate of 805oC/min and pyrolysis temperature of 515oC and heating rate of 59oC/min and pyrolysis temperature of 398oC. Those pyrolysis heating rates and temperatures were achieved at the microwave power of 380 Watt with bio-char loading of 20% and the microwave power of 850 Watt with no bio-char loading. Bio-oil derived from the microwave pyrolysis of sugarcane bagasse which had no bio-char loading in fact contained more non-oxygenated compounds and less PAHs. However, those non-oxygenated compounds have a quite high content of long carbon chains (C22+).]
2015
T28971
UI - Tesis Membership  Universitas Indonesia Library
cover
Ayik Abdillah
Abstrak :
Sektor pelayaran merupakan salah satu aktivitas yang paling banyak menyumbang emisi gas rumah kaca, yaitu sulfur oksida, nitrogen oksida, dan partikulat. Oleh karena itu, Organisasi Maritim Internasional merilis peraturan untuk mengurangi emisi gas rumah kaca melalui penggunaan energi ramah lingkungan yang memiliki kadar sulfur maksimal 0.5%. Pyrolysis merupakan salah satu metode yang dapat digunakan untuk produksi energi rendah sulfur dengan menghasilkan bio-oil (PBO). Namun, PBO memiliki tingkat keasaman rendah, bersifat korosif, memiliki volatilitas yang buruk, viskositas yang tinggi, dan kadar oksigen yang tinggi sehingga densitas energi cukup rendah. Penelitian ini bertujuan untuk meningkatkan kualitas PBO berasal dari sampah organik insulasi bangunan gedung. Metode yang digunakan adalah supercritical fluid menggunakan pelarut etanol dengan variabel rasio etanol terhadap PBO sebesar 1:1, 5:1, dan 7:1, waktu tinggal sebesar 10, 30, dan 60 menit, dan penambahan katalis HZSM-5 dan CoMo/Al2O3. Parameter penelitian dilakukan melalui pemeriksaan viskositas, densitas upgraded bio-oil (UBO), densitas energi (HHV), elemental composition, dan senyawa produk melalui GCMS. Hasil penelitian menunjukkan bahwa rasio 7:1 dengan waktu tinggal 30 menit dengan menggunakan katalis HZSM-5 merupakan kondisi operasi yang optimal untuk menghasilkan kualitas bio-oil yang maksimal. Nilai viskositas pada kondisi operasi ini mencapai 8 mPa.s dari 741 mPa.s, peningkatan HHV dari 20.94 MJ/Kg menjadi 26.90 MJ/Kg. Namun, densitas UBO sebesar 1.054 masih perlu dioptimalkan agar sesuai dengan standar internsional. ......The shipping sector is one of the activities that contribute the most to greenhouse gas emissions, namely sulfur oxides, nitrogen oxides, and particulate matter. Therefore, the International Maritime Organization has released regulations to reduce greenhouse gas emissions through the use of environmentally friendly energy that has a maximum sulfur content of 0.5 wt.%. Pyrolysis is one method that can be used for the production of low-sulfur energy by producing bio-oil (PBO). However, PBO has low acidity, high corrosivity, poor volatility, high viscosity, and high oxygen content so the energy density is quite low. This study aims to improve the quality of PBO derived from bio-based building insulation materials. The method used is supercritical fluid using ethanol as a solvent with a variable ratio of ethanol to PBO was 1:1, 5:1, and 7:1, residence times were 10, 30, and 60 minutes, and the addition was HZSM-5 and CoMo/Al2O3 catalysts. The parameters of the research were carried out by checking the viscosity, density of upgraded bio-oil (UBO), higher heating value (HHV), elemental composition, and product compounds through GCMS. The results showed that the ratio of 7:1 with a residence time of 30 minutes using the HZSM-5 catalyst was the optimal operating condition to produce maximum bio-oil quality. The viscosity value at this operating condition reached 8 mPa.s from 741 mPa.s , increasing HHV from 20.94 MJ/Kg to 26.90 MJ/Kg. However, the UBO density of 1.054 still needs to be optimized to meet international standards.
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bina Restituta Barus
Abstrak :
Asam levulinat merupakan salah satu produk bahan kimia unggulan yang berasal dari biomassa lignoselulosa. Permintaan asam levulinat dunia meningkat sekitar 4% setiap tahunnya menjadikan asam levulinat masuk dalam klasifikasi 12 jenis bahan kimia building block berbasis bio- dan diperlukan oleh industri makanan, farmasi, kecantikan, dan bahan bakar. Proses utama proses produksi asam levulinat adalah hidrolisis biomassa menjadi gula sederhana dengan bantuan katalis homogen jenis asam mineral. Penggunaan asam mineral memberikan yield hingga 70%, namun dinilai memiliki kelemahan dari sisi lingkungan dan proses rekoveri katalis. Beberapa kandidat katalis homogen telah diujicoba dalam proses konversi biomassa menjadi asam levulinat, seperti katalis polimer, logam oksida, serta campuran logam oksida dan zeolit. Dalam penelitian ini, substrat bahan baku yang digunakan adalah biooil berbasis kayu pinus yang mengandung levoglucosan sebesar 35%. Proses konversi dengan hidrotermal katalitik dilakukan pada kondisi subkritis air yaitu 250-340oC dengan variasi dua jenis katalis yaitu zeolit alam Sukabumi teraktivasi dan zeolit komersial H-ZSM-5. Hasil penelitian menunjukkan terjadi pembentukan asam levulinat tertinggi diperoleh dari proses hidrotermal pada temperatur 280oC. Perhitungan yield asam levulinat dilakukan dengan basis levoglucosan yang terkandung di dalam biooil dan diperoleh hasil untuk katalis H-ZSM-5 dan CANZ-5 masing-masing sebesar 19,50% dan 14,85%. ......Levulinic acid is one of the superior chemical products derived from lignocellulosic biomass. The demand for levulinic acid is expected to increase 4% annually and it is classified as one of the top 12 promising bio-based building blocks for supporting the food, pharmaceutical, beauty and fuel industries. Levulinic acid is produced by biomass hydrolysis into simple sugar and homogeneous catalyst such as acid mineral. The utilization of mineral acid gives higher yield until 70%, but it is harm to our environment and having problem in recovery process. Some of heterogeneous catalyst have beed explored in the converting process of biomass to levulinic acid, such as polymer catalyst, metal oxides and other mixture of metal oxide and zeolites. In this study, the pinewood biooil with 35,46% levoglucosan were used in converting process with catalytic hydrothermal process in subcritical water condition. There are two types catalysts carried out to the process, activated Sukabumi natural zeolite and commercial zeolite H-ZSM- 5. The reaction temperature taken at 280oC showed a great yield both in H-ZSM-5 and CANZ-5. The levoglucosan-based calculation gave the levulinic acid yield for H-ZSM- 5 and CANZ-5 were 19,50% and 14,85%, respectively.
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
M.Hilman Gumelar Syafei
Abstrak :
Beberapa studi yang telah dilakukan sebelumnya menunjukkan bahwa minyak kelapa sawit dapat menghasilkan senyawa hidro karbon yang sebagian besarnya berupa bio-gasoline. Diantara cara yang dapat dilakuakn untuk mengolah minyak kelapa sawit adalah melalui teknologi Fluid Catalytic Cracking (FCC). Penggunaan teknologi konversi FCC saat ini juga telah dimanfaatkan untuk menghasilkan bahan bakar biofuel yang dihasilkan dari material minyak nabati. Grup riset AIR mengembangkan sebuah teknologi teknologi sistem FCC skala bench untuk mengolah minyak kelapa sawit menjadi bahan bakar nabati. Untuk meningkatkan dan mengoptimasi kinerja sistem FCC yang dikembangkan oleh grup riset AIR, diperlukan sebuah metode yang dapat digunakan untuk mengestimasi karakteristik dari sistem tersebut. Studi ini akan membahas tentang pemodelan hidrodinamika sistem FCC yang dikembangkan oleh Grup riset AIR melalui prinsip Atomic Model. Pemodelan dilakukan dengan menggunakan software opensource OpenModelica. Diperoleh bahwa model atomic dapat digunakan untuk mengestimasi karakteristik aliran hidrodinamika sistem FCC yang dikembangkan oleh Grup riset AIR ......A number of previous study show that palm oil coul be processed to produce hydro carbon compound that mainly contains bio-gasoline. Among various method, the conversion process could be performed by using fluid catalytic cracking. FCC is also utilized to produce biofuel from the others bio-oil source. Ahmad Indra Research Group (AIR) has developed a bench-scale FCC technology for converting pal oil into biofuel. In order to optimize the FCC performance, it needs a method that could be used to estimate the characteristics of the FCC system. This study discuss about the hydrodynamic modeling of the FCC system through atomic model. The modeling is performed by using OpenModelica open source software. It is obtained that the atomic model could be usde to estimate the hydrodynamics characteristics of the FCC system.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4   >>