Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Raiyani Indah Kasih
Abstrak :
Misalkan $G=(V,E)$ adalah suatu graf terhubung tak trivial dan misalkan pada $G$ didefinisikan pewarnaan $c$ : $E(G)\rightarrow\{1,2,3,\ldots,k\},k\in \mathbb{N}}$, dengan busur-busur yang bertetanggaan dapat diwarnai dengan warna yang sama. Suatu lintasan $u-v$ dengan $u$ dan $v$ adalah dua simpul di $G$ adalah lintasan pelangi jika busur-busur pada lintasan $u-v$ diwarnai dengan warna berbeda. Graf $G$ disebut terhubung pelangi, jika $G$ memuat suatu lintasan pelangi $u-v$ untuk setiap dua simpul ${u,v\in G}$. Pewarnaan $c$ ini disebut pewarnaan-$k$ pelangi dan $k$ adalah banyaknya warna yang digunakan. Nilai minimum $k$ sehingga terdapat pewarnaan-$k$ pelangi pada graf $G$ disebut bilangan keterhubungan pelangi $rc(G)$ pada $G$. Jika untuk setiap dua simpul ${u,v\in G}$, terdapat satu lintasan geodesik pelangi ${u-v}$, maka $G$ disebut terhubung pelangi kuat. Nilai minimum $k$ sehingga terdapat pewarnaan $c$ yang menyebabkan $G$ bersifat terhubung pelangi kuat disebut bilangan keterhubungan pelangi kuat ${src(G)}$ pada $G$. Pada tesis ini dibuktikan bilangan keterhubungan pelangi pada graf grid-3D dan graf perahu. ......Let $G=(V,E)$ is a nontrivial connected graph on which is defined a coloring $c$ : $E(G)\rightarrow\{1,2,3,\ldots ,k\},k\in \mathbb{N}}$, of the edges of $G$, where adjacent edges may be colored the same. A path $u-v$ in $G$ is a rainbow path if there are no two edges of $u-v$ are colored the same. The graph $G$ is rainbow-connected if $G$ contains a rainbow ${u-v}$ path for every two vertices ${u,v \in G}$. The coloring $c$ is called a rainbow $k$-coloring of $G$ where $k$ is the number of color used. The minimum value of $k$ for which there exists a rainbow $k$-coloring of the edges of $G$ is called the rainbow connection number ${rc(G)}$ of $G$. If for every pair ${u,v\in G}$, $G$ contains a rainbow $u-v$ geodesic, then $G$ is called strongly rainbow-connected. The minimum $k$ for which there exist a coloring $c$ of $G$ such that $G$ is strongly rainbow-connected is called strong rainbow connection number $src(G)$ of $G$. In this thesis will be determined rainbow connection number of grid 3D graph and boat graph.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T52558
UI - Tesis Membership  Universitas Indonesia Library
cover
Eri Nugroho
Abstrak :
Geodesik pelangi adalah lintasan terpendek yang menghubungkan dua simpul berbeda dari suatu graf G sedemikian sehingga setiap busur dari lintasan tersebut memiliki warna yang berbeda. Bilangan keterhubungan pelangi kuat dari suatu graf G, disimbolkan src(G), adalah banyaknya warna minimal yang diperlukan untuk mewarnai busur-busur di G sedemikian rupa sehingga terdapat geodesik pelangi untuk setiap pasang simpul. Bilangan keterhubungan pelangi kuat lokal-d (lsrcd) adalah banyaknya warna minimal yang dibutuhkan untuk mewarnai busur-busur di G sedemikian sehingga setiap pasang simpul dengan jarak maksimum d dapat terhubung dengan geodesik pelangi. Pada tesis ini dibahas bagaimana memperoleh nilai lsrcd dari graf prisma diperumum (Pm x Cn) dan graf antiprisma diperumum (Am,n), untuk nilai d = 2, d = 3, dan d =4 ......Rainbow geodesic is the shortest path that connects two different vertices in a graph G such that every edge of the path has a different color. The strong rainbow connection number of a graph G, denoted by src(G), is the smallest number of colors required to color the edges of G such that there is a rainbow geodesic for each pair of vertices. The d-local strong rainbow connection number, denoted by lsrcd, is the smallest number of colors required to color the edges of such that any pair of vertices with a maximum distance d is connected by a rainbow geodesic. This thesis contains some results of the value of lsrcd of generalized prism graphs (Pm x Cn) and generalized antiprism graphs (Am,n) for values of d = 2, d = 3, and d = 4.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nisrina Ayu Labibah
Abstrak :
Graf G=(V,E) merupakan pasangan terurut dari himpunan V dan E, di mana V adalah himpunan simpul di G dan E adalah himpunan busur di G. Lintasan u-v antara dua simpul u dan v di G adalah barisan simpul dan busur yang berawal di u dan berakhir di v tanpa adanya pengulangan simpul. Jarak antara simpul u dan v adalah panjang terkecil dari semua lintasan u-v di G. Geodesik u-v adalah lintasan u-v dengan panjang sama dengan jarak u dan v. Misalkan diberikan pewarnaan pada busur-busur graf. Lintasan pelangi adalah lintasan di mana warna semua busurnya berbeda. Geodesik pelangi adalah geodesik tanpa pengulangan warna busur. Pewarnaan pelangi kuat lokal-d merupakan pewarnaan semua busur di G di mana setiap pasangan simpul dengan jarak sampai d terhubung oleh geodesik pelangi. Bilangan keterhubungan pelangi kuat lokal-d pada graf G, dinotasikan dengan lsrc_d (G), adalah bilangan terkecil banyak warna yang digunakan dalam pewarnaan pelangi kuat lokal-d. Graf bintang dengan m+1 simpul adalah graf dengan satu simpul berderajat m dan m simpul berderajat 1. Graf lintasan adalah graf dengan n simpul yang membentuk himpunan busur {u_i u_(i+1)|i=1,2,...,n-1}. Graf stacked book merupakan hasil kali Kartesius antara graf bintang dan graf lintasan. Pada penelitian ini, dicari bilangan keterhubungan pelangi kuat lokal pada graf stacked book untuk d=2 dan d=3. ......A graph G=(V,E) is an ordered pair of sets V and E, where V is the set of vertices in G and E is the set of edges in G. The u-v path between two vertices u and v in G is a sequence of vertices and edges that starts at u and ends at v without any vertex repetition. The distance between vertices u and v is the minimum length of all u-v paths in G. The u-v geodesic is a u-v path with the length equal to the distance. Suppose all edges of graph is colored. A rainbow path is a path in which the colors of all its edges are different. A rainbow geodesic is a geodesic with no repeating edge colors. A d-local strong rainbow coloring is the coloring of all edges in G where every pair of vertices with a distance of up to d is connected by a rainbow geodesic. The d-local strong rainbow connection number of graph G, denoted by lsrc_d (G), is the smallest number of colors used in the d-local strong rainbow coloring. A star graph with m+1 vertices is a graph with a vertex of degree m and m vertices of degree 1. A path graph is a graph with n vertices and set of edges {u_i u_(i+1)|i=1,2,...,n-1}. A stacked book graph is the Cartesian product between the star graph and the path graph. In this research, we give the local strong rainbow connection number of stacked book graphs for d=2 and d=3.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Alchem Nuravian Permana
Abstrak :
Graf adalah suatu pasangan himpunan dan, dengan adalah himpunan simpul dan  adalah himpunan busur yang menghubungkan dua simpul. Jarak dari dua simpul dan  adalah panjang terpendek dari lintasan, dinotasikan dengan. Suatu lintasan  dengan panjang disebut geodesik. Pasangan simpul dengan jarak terbesar pada suatu graf terhubung disebut diameter. Misalkan adalah pewarnaan pada busur graf terhubung. Jarak antara dua simpul pada  di mana tidak terdapat pengulangan warna busur disebut geodesik pelangi. Graf  disebut terhubung pelangi kuat jika terdapat pewarnaan busur sehingga terhubung geodesik pelangi untuk setiap pasang simpul pada. Pewarnaan disebut sebagai pewarnaan pelangi kuat. Banyaknya warna minimum sehingga didapat pewarnaan sehingga terhubung pelangi kuat disebut bilangan keterhubungan pelangi kuat dari, yang dinotasikan dengan. Misalkan  suatu bilangan bulat positif, didefinisikan pewarnaan pelangi kuat lokal sebagai pewarnaan busur sedemikian sehingga setiap pasang simpul dengan jarak paling besar terhubung dengan geodesik pelangi. Bilangan keterhubungan pelangi kuat lokal, yang dinotasikan dengan, adalah banyak warna minimum pada pewarnaan tersebut. Hasil operasi korona dari dua graf dan dengan banyak simpul masing-masing dan, diperoleh dengan mengambil satu salinan dari graf dan salinan dari graf, dan menambahkan busur pada setiap simpul di salinan ke-dari graf  dengan simpul ke- dari graf. Pada penelitian ini, diberikan bilangan keterhubungan pelangi kuat lokal graf hasil operasi korona antara graf lengkap dengan satu simpul dengan graf roda dan graf hasil operasi korona antara dua graf roda. ......A graph  is a pair of sets  and, where  is the set of vertices and is the set of edges that connect two vertices. The distance between two vertices and is the smallest length of a  path, denoted by. A path of length  is called geodesic. A diameter of is the greatest distance between any two vertices in a connected graph. Let  be a rainbow coloring of connected graph. The shortest path in which doesn’t contain edge color repetition is called rainbow geodesic. Graph is said to be strongly rainbow connected if it contains the coloring such that is connected by rainbow geodesic for every pair of vertices. The coloring is called strong rainbow coloring. The minimum color for which there exists a coloring such that is strongly rainbow connected is called strong rainbow connection number of, denoted by. Let be a positive integer, we define-local strong rainbow coloring such that every pair of vertices of distance up to connected by rainbow geodesic. We define-local strong rainbow connection number, denoted by, as the minimum color in the coloring. The corona product of two graphs  and  of degree and, respectively, is obtained by taking a copy of graph and copies of graph, and joining the vertex of to every vertex of the copy of. In this research, we will find-local strong rainbow connection number of corona product of complete graph with one vertex and wheel graph and corona product of two wheel graphs.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rayhan
Abstrak :
Misalkan graf dengan merupakan himpunan tak kosong simpul dan merupakan himpunan busur. Didefinisikan pewarnaan busur dari graf dimana busur yang bertetangga dapat memiliki warna yang sama. Untuk sembarang pasangan simpul berbeda, lintasan pelangi adalah lintasan yang semua warna busur pada lintasan tersebut berbeda. Lintasan terpendek dari sembarang dua simpul di yang di dalamnya tidak terdapat pengulangan warna disebut sebagai geodesik pelangi. Panjang lintasan terpendek merupakan jarak antara sembarang dua simpul. Pewarnaan pelangi dengan suatu geodesik pelangi untuk setiap pasang simpul berjarak maksimum disebut pewarnaan pelangi kuat lokal-. Banyak -warna minimum yang dibutuhkan untuk membentuk pewarnaan pelangi kuat lokal-pada graf disebut bilangan keterhubungan pelangi kuat lokal- pada graf . Graf hasil operasi korona didefinisikan sebagai graf yang terbentuk dari satu graf dan salinan graf , dimana untuk tiap simpul ke- di dihubungkan dengan tiap simpul dari salinan ke- graf . Penelitian ini bertujuan untuk mencari bilangan keterhubungan pelangi kuat lokal graf bipartit lengkap serta graf hasil operasi koronanya dengan komplemen graf lengkap. Graf bipartit lengkap adalah graf yang himpunan simpulnya dapat dipartisi menjadi dua sub-himpunan , sehingga setiap busur di menghubungkan simpul di dan simpul di dan setiap simpul di bertetangga dengan setiap simpul di dan graf lengkap adalah graf yang setiap pasang simpulnya bertetangga. ......Let be graph where is a non-empty set of vertices and is set of edge. Define an edge coloring , of , where adjacent edges may be have the same color. For any distinct vertices , a rainbow path is a path whose edge color on that path are all distinct. The shortest path from any two vertices in where there are no repeating colors is called a rainbow geodesic. The smallest length of path is a distance between for any vertices and denoted by . A rainbow coloring such that any two vertices with a distance at most with a rainbow geodesic is called -local strong rainbow coloring. Minimum number of -colors required for a -local strong rainbow coloring in is called local strong rainbow connection number-, it can be written as . The corona product is define as a graph that form by taking one grah and copies of graph , where for every -th vertex of is connected to each vertex of the -th copy of . This study aims to find local strong rainbow connection number of complete bipartite graph and it’s corona product with a complement complete graph. Complete bipartite graph is a gaph that the set of vertices can be partitioned into two subset and , such that for every edge in connects the vertices in and vertices in and for every vertices in adjacent with every vertices in and complete graph is a graph that every vertices in that graph is adjacent.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khairunnisa Nur Afifah
Abstrak :
Suatu graf G terdiri dari himpunan simpul V(G) dan himpunan busur E(G). Pemberian warna pada busur suatu graf G disebut pewarnaan busur. Lintasan pelangi adalah lintasan di mana semua busur pada lintasan tidak memiliki pengulangan warna. Geodesik pelangi merupakan lintasan pelangi terpendek antara dua simpul di G. Pewarnaan pelangi kuat lokal-d, di mana d merupakan jarak antara dua simpul dan berupa bilangan bulat positif, merupakan pewarnaan di mana setiap pasangan simpul di G, dengan jarak maksimal d, terhubung oleh geodesik pelangi. Bilangan terkecil yang digunakan dalam pewarnaan tersebut disebut bilangan keterhubungan pelangi kuat lokal-d, dinotasikan dengan lsrc_d(G). Graf hasil operasi korona antara graf G dan graf H, dinotasikan dengan G\odot H, merupakan graf yang dihasilkan dengan mengambil satu salinan graf G dan m salinan graf H, di mana m adalah orde dari G, kemudian setiap simpul ke-i di G dihubungkan ke setiap simpul pada salinan ke-i dari H. Pada skripsi ini, akan ditentukan bilangan keterhubungan pelangi kuat lokal-d pada graf hasil operasi korona antara graf lingkaran untuk nilai d=2 dan d=3. A graph G consists of vertices set V(G) and edges set E(G). ......An assignment of colors to the edges of G is called an edge coloring. A rainbow path is a path where all edges in the path has no color repetition. A rainbow geodesic is a shortest rainbow path between two vertices in G. The d-local strong rainbow coloring, where d is shortened for distance between two vertices and is a positive integer, is a coloring in which every two distinct vertices in G, with distance up to d, can be connected by a rainbow geodesic. The least number of colors used in such coloring is called d-local strong rainbow connection number, denoted by lsrc_d(G). The corona product of G and H, denoted by G\odot H, is a graph obtained by taking a copy of Gand m copies of H, where m is the order of G, then every i-th vertex of G is connected to every vertex in the i-th copy of H. In this thesis, we will determine the d-local strong rainbow connection number of corona product between cycle graphs for d=2 and d=3.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library