Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Gloria Madasevila
Abstrak :
Flu burung dengan sub-jenis virus H5N1 adalah penyakit menular pada unggas yang sangat patogenik dan mematikan. Dalam beberapa kasus, virus ini dapat berpindah ke tubuh manusia melalui kontak langsung dengan unggas terinfeksi. Perkembangan genetik virus H5N1 mengancam kemungkinan pandemi flu burung sejak pandemi terakhir pada tahun 1968. Adanya ancaman pandemi memunculkan kebutuhan untuk mengurangi kemungkinan terjadinya infeksi virus ini ke manusia melalui pengendalian flu burung di sumber populasi unggas. Pemusnahan unggas dapat menjadi salah satu cara pengendalian untuk mengurangi jumlah kejadian infeksi di antara populasi unggas. Namun, pemusnahan unggas secara massal dapat menjadi beban ekonomi yang terlalu berat di wilayah yang terkena wabah. Dalam skripsi ini, dikonstruksi kembali suatu model penyebaran penyakit flu burung dengan faktor pengendalian pemusnahan yang berbeda pada populasi unggas. Tingkat pemusnahan dibuat sebagai fungsi dengan karakteristik tertentu yang bergantung pada populasi terinfeksi. Fungsi-fungsi tersebut menggambarkan pemusnahan secara massal, pemusnahan selektif, dan pemusnahan yang dimodifikasi. Analisis model terkait eksistensi titik keseimbangan, kestabilan titik keseimbangan dan bilangan reproduksi dasar dilakukan secara analitik. Dinamika yang muncul pada sistem seperti bifurkasi juga dianalisis pada setiap jenis fungsi pemusnahan yang digunakan. Selanjutnya, simulasi numerik dilakukan untuk memberikan interpretasi dari hasil kajian analitik yang dilakukan. ......Avian flu with sub-type H5N1 virus is a highly pathogenic and lethal infectious disease in poultry. In some cases, this virus can be transferred to the human body through direct contact with infected birds. The genetic development of the H5N1 virus has threatened the possibility of a bird flu pandemic since the last pandemic in 1968. The threat of a pandemic raises the need to reduce the likelihood of infection of this virus to humans through control of avian influenza in poultry population sources. Poultry culling can be one way of controlling to reduce the number of infections among poultry populations. However, mass culling of poultry can become too heavy an economic burden in an outbreak-affected area. In this thesis, a model for the spread of bird flu is reconstructed with different control factors for culling in poultry populations. The extermination rate is defined as a function of certain characteristics depending on the infected population. The functions describe mass culling, selective culling, and modified culling. Analysis of the model related to the existence of the equilibrium point, the stability of the equilibrium point and the basic reproduction number is carried out analytically. The dynamics that arise in systems such as bifurcation are also analyzed for each type of annihilation function used. Furthermore, numerical simulations were carried out to provide an interpretation of the results of the analytical studies carried out.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sheryl Nathania Salim
Abstrak :
Limfatik filariasis atau yang lebih dikenal dengan penyakit kaki gajah adalah salah satu penyakit yang endemik di wilayah Papua. Penyakit ini disebabkan oleh cacing filaria yang menyerang saluran dan kelenjar getah bening pada manusia dan ditularkan oleh nyamuk. Penyakit ini disebabkan oleh tiga jenis cacing filaria, yaitu Wuchereria bancrofti, Brugia malayi, dan Brugia timori yang ditularkan oleh nyamuk dengan genus Anopheles, Culex, Aedes, dan Mansonia. Pemerintah telah melakukan banyak upaya dalam menanggulangi penyakit ini, salah satunya adalah melalui pengobatan, yaitu BELKAGA (Bulan ELiminasi Kaki Gajah). Penelitian ini menggunakan model matematika untuk membahas bagaimana penanggulangan penyakit limfatik filariasis dengan mempertimbangkan beberapa intervensi, yaitu penggunaan repellent, proses screening, pengobatan bersaturasi, dan fumigasi. Model dikonstruksi dengan menggunakan pendekatan sistem persamaan diferensial nonlinier berdimensi sembilan dengan dua populasi. Populasi manusia dibagi ke dalam enam kompartemen dan populasi nyamuk dibagi ke dalam tiga kompartemen. Selanjutnya, dilakukan kajian analitik terhadap model yang telah dikonstruksi, yaitu menentukan eksistensi dan menganalisis kestabilan titik kesetimbangan, menentukan bilangan reproduksi dasar (R0), dan menyelidiki eksistensi bifurkasi dari model yang terbentuk. Kemudian, dilakukan simulasi numerik pada model yang diajukan dalam penelitian ini. Hasil-hasil kajian analitik maupun numerik pada akhirnya akan dianalisis agar diperoleh interpretasi yang dapat memberi manfaat dalam pemahaman penanggulangan penyakit limfatik filariasis. ......Lymphatic filariasis or better known as elephantiasis, is a disease that is endemic to Papua. This disease is caused by filarial worms that attack the ducts and lymph nodes in humans and are transmitted by mosquitoes. Three types of filarial worms cause this disease, namely Wuchereria bancrofti, Brugia malayi, and Brugia timori. Mosquitoes that transmit it are from the genus Anopheles, Culex, Aedes, and Mansonia. The government has made various efforts to overcome this disease, one of which is through treatment, namely BELKAGA (Bulan Eliminasi Kaki Gajah). This thesis use a mathematical model to discuss how to treat lymphatic filariasis by considering several interventions, namely repellents, the screening process, saturation treatment, and fumigation. The model will use a nine-dimensional nonlinear differential equation system approach with two populations. The human population will divide into six compartments, and the mosquito population divides into three compartments. Furthermore, an analytical study will be carried out on the model that has been built, namely determining the existence and analyzing the stability of the equilibrium point, determining the basic reproduction number R0, and investigating the existence of the bifurcation of the model. Then a numerical simulation will be carried out on the model proposed in this study. This thesis will analyze the results of analytical and numerical studies to obtain interpretations that can help understand the prevention of lymphatic filariasis.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library