Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Shafira Rahma Humairah
Abstrak :
ABSTRAK
Lithium Titanate (Li4Ti5O12) merupakan material anoda digunakan untuk penelitian yang dapat membawa suatu inovasi yang terbaru. Sintesis Li4Ti5O12 telah banyak diteliti karena merupakan material yang menjanjikan sebagai anoda baterai ion lithium dibandingkan dengan anoda konvensional lainnya. Pada penelitian ini dilakukan sintesis Li4Ti5O12 dengan variasi silikon 0%,15%,30%,40% dan penambahan Lithium dimana gunanya untuk mengkompeensasi hilangnya Lithium saat pemrosesan berlangsung. Silikon merupakan material yang memiliki kapasitas penyimpanan yang tinggi. Sehingga dengan ditambahkannya silikon pada material Li4Ti5O12 akan meningkatkan kapasitas dari baterai li-ion. Penelitian ini dimulai dari proses sintesa material Si/Li4Ti5O12. Pada material anoda dilakukan pengujian XRD,. Pada proses sintering terjadi pengecilan porositas dan degasing dan Semakin bertambahnya kadar silikon maka akan semakin kecil luas permukaan butir. kristalinitas TiO2 tidak berubah secara signifikan dan kristalinitas Li4Ti5O12 menurun seiring dengan meningkatnya penambahan silicon dan untuk mengetahui konduktifitas serta impedansi nya dilakukan dengan metode electrochemical impedance spectroscopy
ABSTRACT
Lithium Titanate (Li4Ti5O12) an anode material that brings new innovation Synthesis Li4Ti5O12 has been widely investigated as a promising material as an anode of lithium ion batteries compared to other conventional anode with variation of si (0%,15%,30%,40%). Silicon is a material that has a high storage capacity. So with the addition of silicon on Li4Ti5O12 material will increase the capacity of li-ion battery. This research started from the synthesis process material Li4Ti5O12. the anode material testing XRD,. In the sintering process occurs and shrinkage porosity and degasing The increasing levels of silicon it will be the smaller the surface area of the grain. crystallinity TiO2 did not change significantly and the crystallinity Li4Ti5O12 decreased with increasing addition of silicon. to determine the conductivity and its impedance is done by the method of electrochemical impedance spectroscopy.
2016
S62648
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sarah Alya Firnadya
Abstrak :
ABSTRAK
Baterai lithium ion merupakan baterai yang sedang dikembangkan untuk menjadi tempat penyimpanan energi khususnya untuk mobil listrik. Anoda Li4Ti5O12 LTO atau lithium titanat merupakan anoda yang cukup menjanjikan untuk aplikasi ini karena sifat zero-strain yang dimiliki sehingga dapat tahan pada high rate. Namun, kapasitas yang dimiliki LTO masih tergolong rendah. Oleh karena itu LTO perlu dikombinasikan dengan bahan lain yang memiliki kapasitas tinggi seperti Si. Silikon memiliki kapasitas yang sangat tinggi yaitu 4200mAh/g namun volume ekpansinya pun tinggi. Ukuran nano juga dapat membantu meningkatkan kapasitas. Oleh karena itu komposit LTO/nano Si dibuat untuk mendapat anoda dengan kapasitas yang tinggi dan bersifat stabil. Nano Si yang ditambahkan dengan variasi 1 , 5 , dan 10 . Komposit LTO/nano Si dikarakterisasi dengan XRD, SEM-EDX, dan TEM-EDX. Lalu, untuk mengetahui performa baterai, pengujian yang dilakukan adalah EIS, CV, dan CD. Hasil yang didapat adalah Si meningkatkan konduktivitas, namun tidak signifikan. Penambahan Si menghasilkan kapasitas baterai yang lebih besar yaitu 262,54 mAh/g pada LTO-10 Si. Stabilitas dari komposit LTO/nanoSi baik, dibuktikan dengan efisiensi coulomb pada high rate yang mendekati 100 .
ABSTRACT The lithium ion battery is a battery that is being developed to become a repository of energy, particularly for electric cars. Li4Ti5O12 LTO anode or lithium titanate anodes are quite promising for this application because of its zero strain properties so it can withstand the high rate. However, the capacity of LTO is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200mAh g but, it has a high volume of the expansion. Nano size can also help increase the capacity. Therefore composite of LTO nano Si is made to create an anode with a high capacity and also stable. Nano Si is added with a variation of 1 , 5 and 10 . LTO nano Si composite is characterized using XRD, SEM EDX, and TEM EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh g in the LTO 10 Si. Stability of composite LTO nanoSi is good, evidenced by the coulomb efficiency at the high rate of close to 100 .
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66640
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silvia
Abstrak :
Telepon selular telah banyak digunakan sebagai alat komunikasi dewasa ini. Baterai yang umumnya banyak digunakan untuk telepon selular adalah baterai Li-ion yang dapat diisi ulang, namun penggunaan baterai secara terus-menerus akan menurunkan kemampuannya. Dengan semakin banyaknya penggantian baterai akan menimbulkan banyaknya limbah baterai yang terbuang. Baterai Li-ion mengandung logam berharga yakni: kobalt dan nikel. Sehingga diperlukan pemanfaatan kembali untuk memperoleh logam berharga tersebut. Pada penelitian ini dilakukan perolehan kembali logam kobalt dan nikel dari limbah baterai Li-ion dengan metode leaching C6H8O7 asam sitrat dengan menvariasikan konsentrasi asam sitrat 0,5-2M, temperatur 50-80° dan dilakukan kajian kinetika reaksi leaching dengan menvariasikan temperatur, konsentrasi asam sitrat 0,5-1M dan waktu reaksi 10-120 menit. Hasil penelitian menunjukkan persentase leaching yang optimum pada konsentrasi 1 M, temperatur 80°, waktu 120 menit menghasilkan persentase leaching mencapai 100 dan hasil kajian kinetika variasi temperatur menunjukkan bahwa model kinetika reaksi logam Co dan Ni merupakan model kinetika reaksi pada permukaan material dengan energi aktivasi sebesar 67,12 kJ/mol dan 58,22 kJ/mol. Hasil kajian kinetika berdasarkan variasi konsentrasi asam sitrat menunjukkan bahwa reaksi leaching logam Co dan Ni termasuk reaksi orde pertama. Hasil optimum ekstraksi logam Co dan Ni menggunakan membran cair emulsi diperoleh pada pH 6 dengan logam Co dan Ni yang berhasil diekstraksi sebesar 1337 mg/L dan 445 mg/L. Sedangkan ekstraksi cair-cair menghasilkan ekstraksi yang optimum pada pH 4 dengan konsentrasi ekstraktan 0,6 M, menghasilkan logam Co yang terekstraksi sebesar 1933 mg/L dan logam Ni sebesar 328,21 mg/L. Ekstraksi cair-cair lebih menghasilkan pemisahan logam Co dan Ni yang lebih optimum dibandingkan dengan ekstraksi membran cair emulsi. ......Mobile phone has been widely used as a communication tool nowadays. The most commonly batteries for mobile phones are Li ion batteries but with continuous battery usage will degrade their capabilities. Battery replacements will cause a lot of waste of batteries wasted. Li ion batteries contain valuable metals, such as cobalt and nickel, recovery of this precious metals is needed. In this research, recovery of cobalt and nickel metals from spent Li ion batteries is using leaching C6H8O7 citric acid method by varying citric acid concentration 0,5 2M, temperature 50-80°, and study kinetics of leaching reaction by varying temperature, citric acid concentration 0,5 1M and reaction time 10 120 minutes. The results showed that the optimum leaching percentage at 1 M citric acid concentration, temperature 80°, reaction time 120 minutes resulted 100 leaching percentage and the result of kinetics study based on reaction temperature showed that the reaction kinetics model of Co and Ni metals were reaction kinetics model on the surface of material with activation energy were 67,12 kJ mol and 58,22 kJ mol. The results of kinetics studies based on citric acid concentrations indicated that the reactions of leaching Co and Ni metals were first order reactions. The optimum result of Co and Ni metals extraction using emulsion liquid membrane were obtained at pH 6 with Co and Ni metals extracted were 1337 mg L and 445 mg L. While liquid liquid extraction resulted the optimum extraction Co and Ni metals at pH 4 with extractant concentration was 0.6 and the result were 1933 mg L and 328.21 mg L. Liquid liquid extraction was more efficient method to separating Co and Ni metals than the emulsion liquid membrane extraction.
Depok: Fakultas Teknik Universitas Indonesia, 2018
T51489
UI - Tesis Membership  Universitas Indonesia Library
cover
Musthafa Mursyid
Abstrak :
ABSTRAK
Li4Ti5O12 lithium titanate merupakan salah satu material anoda yang mempunyai performa yang cukup baik karena tidak mengalami SEI Solid Electrolyte Interface . Li4Ti5O12 disintesis menggunakan metode sol-gel dan Solid state dengan memakai sumber ion lithium LiCO3. SiOC merupakan material keramik yang disintesis dari silicon oil untuk memperbaiki kelemahan Li4Ti5O12. Silikon oil dicampurkan secara langsung dengan Li4Ti5O12 dan diaduk didalam beaker glass, kemudian dilakukan pemanasan pada suhu 350oC.. XRD menunjukan adanya fasa spinel LTO, TiO2 dan dengan kadar Si kristalin sangat sedikit. Melalui perhitungan didapatkan ukuran partikel Li4Ti5O12 sebesar 0,08 ?m. SEM-EDX menunjukan persebaran unsur-unsur pada sampel, dimana Si, C, dan O merupakan unsur utama penyusun SiOC. Pada pengujian EIS, penambahan kadar silicon oil menyebabkan Nilai hambatan dari material anoda LTO meningkat artinya konduktivitas dari material anoda mengalami penurunan. Pada pengujian CV, penambahan kadar silicon oil menurunkan kapasitas spesifik dari baterai, disebabkan oleh penurunan kualitas LTO ketika dilakukan pemanasan lanjut dan terbentuknya produk samping pengotor dari silicon oil tersebut yang menghambat pergerakan ion litium ketika proses litiasi dan delitiasi.
ABSTRAK
Li4Ti5O12 lithium titanate is one of the most promising material for anode, because reducing the form of SEI. Li4Ti5O12 were synthesized by sol gel and solid state method with LiCO3 as lithium ion source. SiOC is a ceramic material that synthesized from silicon oil to overcome the weakness of Li4Ti5O12. Silicon oil is adding to Li4Ti5O12 powder and mixed in the beaker glass, subsequently heated at 350oC. XRD shows the existed of LTO spinel, TiO2 and small amount of Si crystalline. From calculation the size of Li4Ti5O12 particle is measured the value is 0,08 m. SEM EDX shows the distribution of element on the sample, where Si, O, and C are the main element that construct the SiOC ceramic. The lowest electrolyte resistance obtained at pure Li4Ti5O12. With the increasing silicon oil value, the specific capacity of battery decreased from CV. It is because of heated the quality of Li4Ti5O12 is decreased and forming a side product that inhibit the movement of lithium ion during lithiation and delithiation.
2017
S68032
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nawang Annisa
Abstrak :
Litium titanat Li4Ti5O12 merupakan salah satu material yang sedang dikembangkan sebagai anoda pada baterai litium ion. Kelebihan litium titanat diantaranya memiliki sifat zero-strain yaitu tidak terjadi perubahan volume atau perubahan volume yang sangat rendah (<1%) saat charge dan discharge, tidak menimbulkan SEI, dan dapat digunakan untuk high rate. Namun litium titanat memiliki kelemahan berupakonduktivitas listrik dan kapasitas yang rendah. Oleh karena itu perlu dikombinas ika n dengan bahan lain yang memiliki kapasitas tinggi seperti silikon dan bahan yang memilik i konduktivitas listrik tinggi seperti karbon. Dalam penelitian ini komposit Li4Ti5O12-C/Si Nano dibuat untuk mendapat anoda dengan kapasitas dan konduktivitas listrik yang tinggi. Karbon ditambahkan dengan variasi 1, 3, dan 5 wt% pada saat proses sol-gel, sedangkan Si nano ditambahkan sebesar 10 wt% dari total material aktif pada pembuatan slurry. Karbon yang ditambahkan merupakan karbon aktif yang sebelumnya telah dilakukan proses aktivasidengan menggunakan NaOH.Karbon aktif hasil aktivasi dilakukan karakterisasi BET dan SEM-EDS. Sementara, komposit Li4Ti5O12-C/Si Nano di karakterisasi dengan XRD danSEM-EDS, sertadilakukan pengujian EIS, CV, dan CDuntuk mengetahui performa elektrokimia baterai. Karbon aktif memiliki luas permukaan spesifik sebesar 490,007 m2/g serta ditemukan pori pada struktur mikro karbon aktif. Berdasarkan hasil uji EIS diperoleh bahwa konduktivitas listrik tertinggi terdapat padaLi4Ti5O12-1%C/Si Nano. Kapasitas spesifik tertinggiberdasarkan hasil uji CVterdapat pada Li4Ti5O12-3%C/Si Nanoyaitu sebesar 168 mAh/g.Kapasitas charge-discharge tertinggi pada current rate 0,2 C sampai 20 C berdasarkan hasil uji CD terdapat pada Li4Ti5O12-5%C/Si Nano.
Lithium titanate is one of the materials being developed as anode in Li-ion battery. Lithium titanate has zero-strain properties that does notvolume change or very low volume change (<1%) at charge and discharge, does not cause SEI, and can be used for high rate. However, lithium titanate has a weakness such aslowelectrical conductivit y and low capacity. Therefore,it needs to be combined with high-capacity materials such as silicon and materials that have high electrical conductivity such as carbon. In this study,the composite Li4Ti5O12-C/Si Nano was made toobtain an anode with high capacity and electricalconductivity. Carbon is added with a variation of 1, 3, and 5 wt% during the sol-gel process, while Si nano is added by 10wt% of the total activematerialingred ie nt in the slurry making. The carbon added is activated carbon which has previously been activated by using NaOH. Activated carbon as activation result ischaracterized by BET and SEM-EDS. Composite Li4Ti5O12-C/Si nano is characterized by XRD and SEM-EDS. Then, to determine the battery performance, EIS, CV, and CD testwere conducted. Activated carbon has a specific surface area of 490.007 m2/g and found pores in the micro structureof activated carbon. Based on EIS test results obtained that the highest electrical conductivity is found in Li4Ti5O12-1%C/SiNano. The highest specific capacity based on CV test resultsis found inLi4Ti5O12-3%C/Si Nanowhich is168 mAh/gand the highest charge-discharge capacity at current rate 0,2 C to 20 C based on CD test results is found in Li4Ti5O12-5%C/SiNano.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisaa Nurqomariah
Abstrak :
Limbah baterai sangat banyak ditemukan karena hampir seluruh peralatan elektronik menggunakan baterai untuk mengoperasikannya. Salah satu jenis baterai yang banyak digunakan adalah baterai lithium ion. Logam berat yang terkandung pada baterai lithium ion sangat berbahaya bagi kesehatan dan lingkungan, untuk itu diperlukan upaya untuk meminimalisir kandungan logam berat sebelum limbah baterai dilepas ke lingkungan dan dapat dimanfaatkan kembali. Upaya yang dapat dilakukan adalah perolehan kembali logam berat. Metode yang akan digunakan adalah leaching. Dalam penelitian ini menggunakan asam organik yaitu asam sitrat 1 M dengan 2 H2O2 pada kondisi operasi 80°C selama 60 menit dapat menghasilkan logam Co 94.27. Proses leaching pada penelitian ini dikendalikan oleh reaksi kimia pada permukaan dengan energy aktivasi sebesar 42.29 kJ/mol. Pada proses ekstraksi cair ndash; cair dengan pH 3,5 dan konsentrasi ekstraktan Cyanex 272 sebesar 0,1 M diperoleh logam Co sebesar 95.82 dari total kobalt hasil leaching. ......Battery waste found anywhere in the world because most of the electronic devices need battery to operate them. Battery lithium ion is one of rechargeable batteries which consist heavy metals. Heavy metals inside lithium ion battery is dangerous for health and environment. For that main reason, recovery of heavy metals are needed in order to minimalize the composititon before its being disposed to the environment. The method that will be used in this research is leaching and followed with liquid ndash liquid extraction. In this study, leaching process has done using 1 M citric acid with 2 H2O2, 80°C for 60 minutes and can recover 94.27 Co. This leaching process is controlled by surface chemical reaction model with the activation energy of 42.29 kJ mole. Meanwhile, for the liquid ndash liquid extraction with pH of aqueous phase 3,5 and Cyanex 272 0,1 M produce 95.82 of cobalt from the leaching result.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ajeng Fadilah Budi Retna Putri
Abstrak :
Penumpukan limbah baterai Li-ion menimbulkan dampak buruk terhadap lingkungan karena terdapat kandungan logam berat pada elemen penyusunnya, salah satunya adalah kobalt. Melihat nilai ekonominya yang tinggi, logam kobalt berpotensi untuk dimanfaatkan kembali, salah satunya dengan metode pelindian (leaching) menggunakan asam anorganik, seperti asam klorida (HCl) dan reagen pereduksi, seperti hidrogen peroksida (H2O2) untuk meminimalisir dampak negatif asam anorganik terhadap lingkungan. Persentase maksimum pelindian kobalt mencapai 98,04% dengan kondisi rasio S/L 25 g/L, 2 M HCl, waktu pengadukan 60 menit, kecepatan 400 rpm, konsentrasi H2O2 3 vol.% dan suhu operasi 85℃. Studi kinetika reaksi dicocokan dengan model shrinking core diperoleh energi aktivasi sebesar 62.855 kJ/mol atau 15 kcal/mol. Proses dilanjutkan dengan metode ekstraksi cair-cair menggunakan ekstraktan Cyanex 272 untuk memperoleh kemurnian logam yang lebih tinggi. Diperoleh efisiensi ekstraksi maksimum mencapai 98,87%, pada kondisi 0,65 M Cyanex 272, rasio O:A 3:1, pH fasa akuatik 6,5, waktu pengadukan 60 menit, kecepatan 400 rpm, suhu operasi 30℃. ......The accumulation of spent Li-ion batteries has an adverse effect on the environment because there are heavy metals content in its component, one of them is cobalt. Seeing its high economic value, cobalt metal has the potential to be recycled, one of which is by leaching using inorganic acid, such as hydrochloric acid (HCl) and reducing reagents, such as hydrogen peroxide (H2O2) to minimize the negative impact of inorganic acids on the environment. The maximum percentage of cobalt leaching reached 98.04% with the condition of the ratio S/L of 25 g/L, 2 M HCl, stirring time 60 minutes, speed of 400 rpm, H2O2 concentration at 3 vol.% And an operating temperature of 85℃. The reaction kinetics study was matched with shrinking core model with an activation energy of 62,855 kJ/mol or equivalent to 15 kcal/mol. The process is continued with the liquid-liquid extraction method using Cyanex 272 extractant to obtain higher metallic purity. Maximum extraction efficiency was obtained at 98.87%, at a condition of 0.65 M Cyanex 272, O:A ratio of 3: 1, pH of acuatic phase 6.5, stirring time 60 minutes, speed 400 rpm, operating temperature 30℃.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Assyifa Nadifah
Abstrak :
Saat ini, baterai lithium ion merupakan sumber listrik yang digunakan untuk banyak perangkat elektronik. Konsumsi baterai ini pun terus meningkat karena perluasan teknologi informasi serta kendaraan hybrid dan listrik (HEV dan EV). Baterai li-ion lebih dipilih daripada baterai lainnya karena memiliki kemampuan yaitu dapat diisi ulang, ringan dan tidak memerlukan perawatan yang khusus. Limbah baterai li-ion tergolong limbah B3 karena mengandung logam berat. Logam tersebut dapat dilakukan perolehan kembali (recovery) untuk dimanfaatkan kembali dan mengurangi efek bahayanya terhadap lingkungan. Kandungan logam yang terdapat dalam baterai li-ion diantaranya adalah logam nikel dengan persentase sebesar 5-10%. Metode yang dapat dilakukan untuk recovery logam tersebut dari baterai li-ion dengan proses leaching menggunakan asam nitrat (HNO3) sebagai leaching agent dan hidrogen peroksida (H2O2) sebagai reducing agent. Penambahan H2O2 bertujuan untuk meningkatkan efektivitas leaching. Dalam penelitian ini, digunakan 3M HNO3, 3% v/v H2O2 pada kondisi operasi 80OC selama 60 menit, menghasilkan logam Ni ter-leaching sebesar 96,09%. Larutan hasil leaching yang didapat akan dilakukan proses ekstraksi cair- cair menggunakan LIX 84-ICNS sebagai ekstraktan ditambah Tributyl Phospate (TBP) sebagai modifiernya. Hasil dari proses ekstraksi cair-cair dengan konsentrasi ekstraktan sebesar 0,9 M, pH fasa akuatik sebesar 6 selama 45 menit ekstraksi, menghasilkan logam Ni terekstraksi sebesar 90,53%. ......Nowadays, lithium ion batteries are a source of electricity used by many electronic devices. This battery use continues to grow due to the expansion of information technology along with hybrid and electric (HEV and EV). Li-ion batteries are favored over other batteries because they are rechargeable, lightweight and do not need special maintenance. Li-ion battery waste is known as B3 waste, as it contains heavy metals. These metals may be recycled in order to be reused and to reduce their adverse effects on the environment. The metal content of the li-ion battery contains nickel metal with a percentage of 5-10 %. The method that can be used to recover the metal from the li-ion battery is leaching process using nitric acid (HNO3) as a leaching agent and hydrogen peroxide (H2O2) as a reducing agent. The aim of the addition of H2O2 is to increase the efficiency of the leaching. The results showed that the leaching process reach the optimum value by using 3 M HNO3, 3% v/v H2O2, at 80oC for 60 minutes leaching process resulting 96,09% Ni extracted. The leaching solution obtained, was then carried out by a solvent extraction process using LIX 84-ICNS as extractand and Tributyl Phosphate (TBP) as the modifier. The result from solvent extraction with 0,9 M LIX 84-ICNS and 0,1 M TBP, pH aqueous phase 6 in 45 minutes extraction time is 90,53% Ni being extracted.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisal Aldy
Abstrak :
Li4Ti5O12 lithium titanate disintesis menggunakan metode sol-gel dan hidrotermal dengan memakai sumber ion lithium LiOH. Anoda komposit Li4Ti5O12/Sn dipreparasi menggunakan metode ball mill dengan 3 variasi Sn. XRD menunjukkan fasa spinel, TiO2, dan Sn. SEM memperlihatkan bahwa partikel Li4Ti5O12 memiliki ukuran berkisar 20-50 ?m dan ukuran partikel Sn berkisar 2-70 ?m. Nilai hambatan elektrolit terendah didapatkan pada kadar Sn terbesar. Peningkatan kadar Sn dapat meningkatkan kapasitas spesifik dari baterai pada uji CV. Reaksi alloying dan dealloying LixSn mengakomodasi peningkatan kapasitas spesifik pada C/D. Namun, volume ekspansi dari LixSn menyebabkan hilangnya kapasitas saat C rate meningkat. Kapasitas terbesar pada laju charge/discharge rendah dan tinggi didapatkan pada kadar Sn terbesar. ...... Li4Ti5O12 lithium titanate were synthesized by sol gel and hydrothermal method with LiOH as lithium ion source. Li4Ti5O12 Sn composites anode were preparared by ball mill method with three of Sn variation. XRD shows spinel, TiO2, and Sn phases. SEM shows that Li4Ti5O12 particles are around 20 50 m size and Sn particles are around 2 70 m size. The lowest electrolyte resistance obtained at the highest Sn value. With the increasing Sn value, the specific capacity of battery can be increased from CV. Alloying and dealloying reaction of LixSn accomodate the increased specific capacity from C D. However, volume expansion from LixSn leads to loss of capacity when the C rate increases. The capacity at low and high charge discharge rate obtained at the highest Sn value.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66450
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ramadhan
Abstrak :
Penelitian ini bertujuan untuk mengambil kembali logam kobalt dari limbah Lithium Ion Battery (LIB) atau baterai Li-Ion karena pada tahun 2000 kadar mencapai 200-500 ton/tahun dimana kobalt terdapat 30% yang dapat membahayakan lingkungan. Teknologi membran cair emulsi adalah salah satu teknologi rekoveri logam yang sangai baik karena sangat selektif, dapat diaplikasikan dalam skala besar, dan hemat waktu. Tahap awal diperlukan proses leaching menggunakan asam sitrat dengan konsentrasi 1 M menghasilkan kobalt 89,74% dan lithium 46,80% pada suhu 55oC selama 50 menit. Tahap ekstraksi dengan membran cair emulsi dengan ekstraktan (Cyanex 272) konsentrasi 0,05 M dan kadar surfaktan (Span-80) 6% karena angka tersebut menghasilkan emulsi paling stabil. Ekstraksi dilakukan pada suhu ruang dan pengadukan 250 rpm dan menghasilkan ekstraksi 48,73% Co dan 13,06% Li pada pH 5,5. Penelitian ini cukup selektif untuk memisahkan logam Co dan Li. ......This research has a purpose to recapture cobalt metal from spent Lithium Ion Battery (LIB) or Li-Ion battery because in 2000 the amount of the waste was 200-500 ton/year which contained 30% cobalt that can harm the environment. Emulsion liquid membrane technology is one of the most best technology in metal recovering because highly selective recovery techniques, can be applied on a large scale, and time saving. The initial stage is leaching process is required to use citric acid at a concentration of 1 M to produce cobalt 89,74% and lithium 46,80% at 55oC for 50 minutes. Then, phase extraction with liquid membrane emulsion with the extractant (Cyanex 272) 0,05 M concentrations and levels of surfactants (Span-80) 6% as the figure most stable emulsions in this research. The extraction is done at room temperature and stirring 250 rpm and generates extraction of 48,73% Co and 13,06% Li at pH 5.5. This study was selective enough to separate the metals Co and Li.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64505
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>