Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Adinda Maharani Dwi Yuan Syah
Abstrak :
ABSTRAK Daerah perbatasan perairan Indonesia merupakan salah satu wilayah yang rentan akan kegiatan ilegal yang dapat merugikan negara. Oleh karena itu, perlu adanya pengawasan untuk setiap objek yang melewati perbatasan perairan tersebut. Pengawasan dapat dilakukan dengan pendeteksian jenis kapal yang melewati area perbatasan antar negara. Saat ini di Indonesia sudah terdapat pendeteksian khusus untuk mendeteksi adanya kapal perang asing. Selain kapal perang, kapal nelayan juga perlu dilakukan pengawasan untuk mencegah adanya illegal fishing. Pendeteksian kapal perang dan kapal nelayan dapat dilakukan dengan menggunakan mesin. Mesin dapat diprogram untuk menjalani perintah secara berulang kali, hal tersebut disebut sebagai Machine Learning, yang merupakan salah satu bidang dari Artificial Intelligence. Metode untuk memprogram pembelajaran mesin tersebut disebut dengan Deep Learning. Deep learning bekerja dengan membentuk hubungan antara neuron seperti layaknya cara kerja otak manusia atau biasa disebut dengan neural network.Salah satu jenis dari neural network yang terkenal adalah Convolutional Neural Network(CNN). CNN digunakan untuk simulasi pendeteksian kapal nelayan dan kapal militer dengan hasil keluaran berupa nilai akurasi training, akurasi validasi, dan juga prediksi. CNN juga ditambahkan additional layer, yaitu dropout dan batch normalization untuk meningkatkan ketepatan prediksi. Hasil yang didapatkan adalah pengaruh dari parameter layer dan dataset yang digunakan terhadap nilai akurasi pada pelatihan program. Dari simulasi didapatkan nilai akurasi yang paling baik dengan penggunaan pooling layer jenis max pooling dengan penggunaan layer tambahan berupa batch normalization dan dropout.
ABSTRACT Indonesia's waters border is one of the areas that are vulnerable to illegal activities that can disserve the country. Detecting types of ships that cross border areas between countries is needed. Controlling can use machine thats automatically detect the object can do detection of warships and fishing boats. The concept is called machine learning. Machine learning is one of the types of Artificial Intelligence. The method for programming the machine learning is called Deep Learning. Deep learning works by forming relationships between neurons like the way the human brain works or commonly called a neural network. Convolutional Neural Network (CNN) is the famous method for deep learning. CNN is used to simulate the detection of fishing vessels and military vessels with the output in the form of training accuracy, validation accuracy, and the final prediction. CNN can also added an additional layer, namely dropout and batch normalization to improve the accuracy of predictions. The results obtained are the effect of the layer and dataset parameters used on the accuracy value in the training program. The best accuracy is obtained by using max pooling for pooling layer with additional layers of batch normalization and dropout.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Fahrezi
Abstrak :
Kanker prostat merupakan salah satu penyakit yang menjadi penyebab kematian utama di kalangan pria. Deteksi dini melalui pemindaian medis dapat membantu dalam pengobatan dan penanganan yang efektif. Namun, interpretasi dari pemindaian ini seringkali sulit dan memerlukan keahlian klinis yang tinggi oleh para ahli patologi. Selain itu keterbatasan dataset publik dengan bentuk biopsi H&E dengan anotasi level biopsy hinggal level patch yang tersedia terbatas jumlahnya sehingga menyebabkan pelatihan machine learning menjadi lebih sulit. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan dataset dengan model machine learning yang dapat membantu mengimprove model machine learning pengklasifikasi kanker prostat. Model machine learning yang digunakan untuk mengembangkan dataset dalam penelitian ini adalah conditional Progressive Growing GAN (ProGleason-GAN), sebuah jenis jaringan saraf tiruan yang dapat digunakan untuk mempelajari dan menghasilkan gambar sintetis dari pemindaian prostat yang telah menunjukkan hasil yang menjanjikan dalam generasi gambar sintetis beresolusi tinggi. Dataset yang ditambahkan dengan hasil gambar sintesis ProGleason-GAN digunakan untuk melatih model klasifikasi kanker prostat yaitu Semi Supervised Learning yang di gabungkan dengan Multiple Instance Learning. Dataset yang yang berisikan dataset SICAPv2 yang ditambahkan dengan hasil augmentasi ProGleason-GAN dinamakan SICAPv2 augmented. Penulis juga mengembangkan model klasifikasi dengan penambahan batch normalization yang dimana memungkinkan setiap batch data yang diberikan ke jaringan untuk dinormalisasi terlebih dahulu sebelum diolah lebih lanjut oleh jaringan. Ketika model klasifikasi ditambahkan dengan batch normalization serta dilatih dengan SICAPv2 augmented , maka nilai accuracy yang dihasilkan sebesar 76% lebih tinggi 4% model acuan. ......Prostate cancer is a disease that is the main cause of death among men. Early detection through medical scanning can help in effective treatment and management. However, interpretation of these scans is often difficult and requires a high degree of clinical skill by pathologists. In addition, the limited number of available public datasets in the form of H&E biopsies with biopsy level to patch level annotations makes machine learning training more difficult. Therefore, this research aims to develop a dataset with a machine learning model that can help improve machine learning models for prostate cancer classification. The machine learning model used to develop the dataset in this research is Conditional Progressive Growing GAN (ProGleason-GAN), a type of artificial neural network that can be used to learn and generate synthetic images from prostate scans which has shown promising results in the generation of high-resolution synthetic images. tall. The dataset added with the ProGleason-GAN synthetic image results is used to train a prostate cancer classification model, namely Semi Supervised Learning combined with Multiple Instance Learning. The dataset containing the SICAPv2 dataset added with the results of ProGleason-GAN augmentation is called SICAPv2 augmented. The author also developed a classification model with the addition of batch normalization, which allows each batch of data given to the network to be normalized first before being further processed by the network. When the classification model was added with batch normalization and trained with augmented SICAPv2, the resulting accuracy value was 76%, 4% higher than the reference model.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library