Ardiansyah Ramadhan Pranoto
Abstrak :
Menurut EEB Laboratory Jakarta, pada tahun 2016 sektor bangunan memiliki mengkonsumsi 18-20% dari total penggunaan energi di Indonesia, dan terus menerus meningkat seiring perkembangan teknologi yang membutuhkan sumber energi dalam upaya peningkatan kualitas hidup penghuni bangunan. Bangunan pintar merupakan sebuah konsep pemanfaatan teknologi yang tidak hanya bertujuan meningkatkan kenyamanan penghuni, tetapi juga dapat membantu dalam upaya efisiensi energi pada operasional bangunan. Maka dari itu, penelitian ini akan membantu upaya perancangan efisiensi energi pada sebuah bangunan dengan meninjau fitur dan karakteristik yang berpotensi dalam mendukung efisiensi energi dengan penerapan konsep bangunan pintar. Selain itu, akan dibuat sebuah model dengan pemanfaatan machine learning yang mampu memberikan prediksi tingkat penggunaan energi berdasarkan fitur-fitur yang diberikan. Model machine learning yang dihasilkan memiliki rata-rata nilai kesalahan relatif sebesar 17,76%, serta didapatkan tingkat efisiensi dengan penerapan seluruh fitur yang diidentifikasi pada rentang 34,5% hingga 45,3% tergantung pada lantai yang ditinjau.
......According to EEB Laboratory Jakarta, Indonesian building sector accounts for 18- 20% energy consumption in 2016, and this trend will continuously increase as technology needed to increase housing residents' quality keeps advancing. Smart building is a concept to utilise technology that does not only help increase occupants' comfort inside the building, but it can also help increase energy usage efficiency in building operations. This research aims to help the effort in designing energy efficiency planning for a building by reviewing potential features and characteristics that could help improves energy efficiency with implementation of the smart building concept. A model based on machine learning that could give prediction on the level of energy consumption based on given features will also be discussed here. This model of machine learning has a 17,76% average of relative error, as well as 34,5% until 45,3% efficienct level that includes implementation of all features, depending on analysed floor.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library