Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Muhammad Rafif Roid Shiddiq
"Bucket tooth pada alat berat excavator menggunakan baja High Strength Low Alloy sebagai material didasari oleh sifat-sifatnya. Perlakuan panas yang dilakukan pada baja HSLA adalah normalisasi, tempering, austenisasi, dan quenching, serta double tempering. Penemuan Delay Crack pada produk bucket tooth yang disebabkan oleh adanya austenit sisa pada komponen bucket tooth, austenite ini menimbulkan tegangan sisa di dalam produk. Meminimalisir jumlah austenite sisa serta keseragaman mikrostruktur adalah langkah yang tepat untuk mencegah Delay Crack. Penelitian ini berfokus pada kualifikasi kecepatan pendinginan media pendingin berupa air, air hangat, dan oli dan meneliti pengaruhnya terhadap struktur mikro dan kekerasan baja HSLA. Kecepatan pendinginan rata-rata yang paling tinggi secara berurutan adalah air, oli, dan air hangat, senilai 111,28 oC/s, 51.30 oC/s, 56.75 oC/s. Perbedaan kecepatan pendinginan akan menghasilkan struktur mikro baja HSLA yang berbeda. Fasa martensite terbentuk paling dominan pada setiap jenis media pendingin dengan sedikit austenite sisa yang kadarnya meningkat seiring dengan meningkatnya kecepatan pendinginan yaitu 0.8%, 2,4%, 3% . Kekerasan mikro menemukan fraksi area transformation zone keras akibat dikelilingi oleh martensite pada setiap baja, fasa lower bainite pada baja media pendingin air hangat, serta karbida pada baja media pendingin Air suhu kamar. Nilai kekerasan makro untuk tiap sampel meningkat seiring meningkatnya kecepatan pendinginan, yaitu secara berturut turut menjadi 49.1 HRC, 47.1 HRC, dan 44.3 HRC. Sehingga meningkatnya kecepatan pendinginan menyebabkan peningkatan kekerasan dan kadar austenite sisa. Beberapa temuan lainnya seperti dekarburisasi pada permukaan baja di analisis untuk mengetahui penyebab delay crack terjadi.

Excavator’s bucket tooth using High Strength Low Alloy Steel based material because of it’s properties. The heat treatment performed on HSLA steel is normalization, tempering, austenisation, and quenching, and the last double tempering. Delay Crack was discovered on bucket tooth products caused by the presence of retained austenite in the bucket tooth component, this austenite raises residual stresses in the product. Minimizing the amount of retained austenite and gaining microstructural uniformity is the right step to prevent Delay Crack. This research focuses on qualifying the cooling rate of quenching media in the form of water, hot water, and oil then examines their effects on the microstructure and hardness of HSLA steels. The highest average cooling speed, respectively, is water, oil and warm water, valued at 111.28 oC / s, 51.30 oC / s, 56.75 oC / s. The difference in cooling speed will produce a different HSLA steel microstructure. Martensite phase is formed dominantly in every quenching media variables with a little content of retained austenite whose levels increase with increasing cooling rate by 0.8%, 2.4%, 3%. Microhardness Testing found a hard zone named transformation zone fraction due to being surrounded by martensite in each variables, lower bainite phase in hot water variable, and carbide in water variable. The value of macro hardness for each sample increased with increasing cooling rate, which became 49.1 HRC, 47.1 HRC, and 44.3 HRC respectively. So that the increase in cooling rate causes an increase in hardness and residual austenite levels. Several other findings such as decarburization on the steel surface are analyzed to determine the cause of the delay crack.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Finia Nur Chaerunisa
"Baja High Strength Low Alloy digunakan sebagai material bucket tooth pada excavator. Perlakuan panas dilakukan pada baja HSLA mulai dari hasil pengecoran, yaitu normalisasi, pre-tempering, austenisasi, dan double quenching. Penelitian sebelumnya menemukan adanya austenit sisa pada komponen bucket tooth yang menyebabkan delay crack akibat austenit sisa yang bertransformasi dan menimbulkan tegangan sisa. Struktur mikro yang seragam diperlukan agar material lebih responsif terhadap perlakuan panas selanjutnya. Penelitian ini berfokus pada optimalisasi temperatur normalisasi sebelum pengerasan dan meneliti pengaruhnya terhadap struktur mikro dan sifat mekanis baja HSLA, yaitu normalisasi pada temperatur 910oC, 940oC, 970oC, dan 1000oC. Struktur mikro baja HSLA hasil cor terdiri dari matriks granular bainit yang dendritik dan adanya area transformation zone yang memiliki kekerasan mikro lebih tinggi dibanding matriks. Ketika dinormalisasi pada berbagai temperatur, dihasilkan matriks carbide free upper bainit dengan pola yang masih dendritik dan masih terdapat transformation zone (lower bainite dan martensite dan/atau retained austenite). Namun, normalisasi 1000oC, struktur dendritik tidak ditemukan pada permukaan sampel. Penggunaan etsa Vilella’s reagent, ditemukan pada sampel hasil cor memiliki ukuran butir yang besar. Meningkatnya temperatur normalisasi menyebabkan peningkatan ukuran butir. Namun pada temperartur 970oC, pengamatan dengan SEM ditemukan adanya nukleasi butir secara intra-granular yang ditandai ditemukannya butir-butir yang lebih halus. Presentase area transformation zone pada baja HSLA hasil cor sebesar 7,786%, kemudian meningkat seiring meingkatnya temperatur normalisasi, secara bertutut-turut menjadi 8.043%, 10.012%, 10.222%, dan 11.295%. Nilai kekerasan makro untuk sampel hasil cor sebesar 356,05 HV dan meningkat seiring meningkatnya temperatur normalisasi, yaitu secara berturut turut menjadi 361,90 HV; 366,47 HV; 377,18 HV; 382,00 HV. Kekuatan tarik sampel as-cast 1172,31 MPa, kemudian meningkat seiring meningkatnya temperatur normalisasi, berutut-turut menjadi 1190,93 MPa; 1205,74 MPa; 1238,55 MPa; dan 1253,35 MPa. Meningkatnya temperatur normalisasi menyebabkan peningkatan kekerasan dan kekuatan tarik, walaupun tidak signifikan. Tegangan sisa pada permukaan sampel normalisasi 970oC didominasi tegangan sisa tarik.

High Strength Low Alloy steel is used as bucket tooth material in excavators. The heat treatment is carried out on as-cast HSLA steel starting from normalization, pre-tempering, austenisation, and double quenching. Previous research found the presence of residual austenite in the bucket tooth component which causes delay cracks due to the residual austenite that transforms and causes residual stress. A uniform microstructure is needed, so that the material is more responsive to subsequent heat treatment. This research focuses on optimizing the normalization temperature before hardening and investigating its effect on the microstructure and mechanical properties of HSLA steels, with normalization at 910oC, 940oC, 970oC, and 1000oC. The microstructure of HSLA steel as-cast consists of a dendritic matrix of granular bainite and transformation zone area with a higher micro hardness than the matrix. When normalized at various temperatures, carbide free upper bainite matrix is ​​produced with a dendritic dendritic pattern and there is still a transformation zone (lower bainite and martensite and/or retained austenite). However, normalizing 1000oC, the dendritic structure was not found on the surface of the sample. A large grain size was found on the cast sample when the Vilella’s reagent etching was used. Increasing the normalization temperature causes an increase in grain size. However, at a temperature of 970oC, observations with SEM found that there was intra-granular nucleation characterized by the discovery of finer grains. The percentage of transformation zone area on HSLA steel produced by casting is 7,786%, then increases with increasing normalization temperature, which are 8,043%, 10,012%, 10,222%, and 11,295% respectively. The macro hardness value for the cast sample was 356,05 HV and increased with increasing normalization temperature, which are 361,90 HV; 366,47 HV; 377,18 HV; and 382,00 HV respectively. The tensile strength of the as-cast sample was 1172,31 MPa, then increasing with increasing normalization temperature to 1190,93 MPa; 1205,74 MPa; 1238,55 MPa; and 1253,35 MPa, respectively. An increase in normalization temperatures cause an increase in hardness and tensile strength, although not significant. Residual stress on the surface of the 970oC normalized sample is dominated by tensile residual stress."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfian Dwiki Noer Ramadhan
"Penelitian ini didasari adanya masalah crack pada produk bucket tooth yang menggunakan material baja HSLA di industri alat berat setelah 2 bulan pengiriman ke pelanggan(delayed crack). Penelitian sebelumnya mengemukakan bahwa delayed crack ini diduga akibat adanya austenite sisa yang bersifat metastabil. Austenite sisa dapat bertransformasi menjadi martensite sehingga terjadi peningkatan volume dan tegangan internal yang menyebabkan delayed crack. Penelitian ini berfokus mengurangi austenite sisa dengan variasi suhu tempering. Suhu temper yang digunakan adalah 155°C, 205°C, 255°C, dan 305°C Mikrostruktur menunjukkan adanya transformation zone yaitu daerah dimana transformasi fasa yang terjadi belum sempurna. Hasil dari penelitian ini menunjukkan jumlah austenite sisa dan nilai kekerasan menurun ketika suhu temper dinaikkan.

This research is based on the problem of crack on bucket tooth products using HSLA steel material in heavy equipment industry after 2 months of delivery to customers (delayed crack). Previous studies have suggested that the delayed crack is thought to be due to metastable retained austenite. The retained austenite can be transformed into martensite which causes an increase in internal volume and stress resulting in delayed crack. This research focuses on reducing retained austenite with variations in tempering temperature. Tempering temperatures used were 155°C, 205°C, 255°C, and 305°C. Microstructure shows that there is a transformation zone, which is an area where phase transformation is not yet perfect. The results of this study indicate the amount of remaining austenite and the value of hardness decreases when the temper temperature is raised."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library