Ditemukan 2 dokumen yang sesuai dengan query
Daffa Adra Ghifari Machmudin
"Streaming adalah metode untuk mengonsumsi musik terpopuler saat ini. Layanan streaming musik dengan jumlah pengguna yang paling banyak, Spotify, menyediakan banyak informasi mengenai musik yang tersedia di platform tersebut, termasuk fitur audio. Fitur audio di Spotify merupakan deskripsi dari sebuah musik yang menjelaskan mengenai sebuah lagu seperti danceability, durasi, dan tempo. Fitur ini dapat diakses menggunakan application programming interface (API). Selain itu, Spotify juga menyediakan tangga lagu yang berisi 200 lagu yang paling banyak di stream dan diperbaharui setiap harinya. Dengan menggabungkan informasi mengenai fitur audio dan tangga lagu harian dari Spotify, penelitian ini akan melakukan analisis mengenai tren dari musik menggunakan metode runtun waktu. Pertama, akan dilakukan dekomposisi runtun waktu untuk mengekstraksi komponen tren dari musik. Kedua, akan dilakukan pemodelan menggunakan Vector Autoregressive (VAR) yang akan dilanjutkan dengan forecasting. Terakhir, hasil prediksi dari model VAR akan dibandingkan dengan nilai asli. Hasil dari penelitian menunjukkan bahwa model VAR memiliki kemampuan yang baik untuk memprediksi tren fitur audio di masa depan pada jangka waktu tertentu.
Streaming is the most popular music consumption method of the current times. As the biggest streaming platform based on subscriber number, Spotify stores miscellaneous information regarding the music in the platform, including audio features. Spotify’s audio features are descriptions of songs features in form of variables such as danceability, duration, and tempo. These features are accessible via Application Programming Interface (API). On the other hand, Spotify also publishes their own charts consisting of 200 most streamed songs on the platform (based on regions) which are updated daily. By combining Spotify’s song charts and the songs’ respective audio features, this research conducted analysis on musical trends using time series modeling. First, the combined data is decomposed to extract the trend features. Second, a Vector Autoregressive (VAR) model is built and followed by forecasting of the audio features. Lastly, the performance of forecasted values and the actual observations is evaluated. As a result, this research has proven that musical trends can be forecasted in the future for a short period by using VAR model with relatively low error."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Rodiatul Adawiyah
"Mengenali burung hanya dengan suara mereka mungkin merupakan tugas yang sulit tetapi tidak berarti itu tidak mungkin. Convolutional Neural Network (CNN) saat ini sangat populer sebagai pendekatan untuk menyelesaikan tugas ini. Kesenjangan antara model berbasis CNN dan pendekatan berbasis fitur cukup jauh. Meskipun banyak dari rekaman itu cukup berisik, CNN bekerja dengan baik tanpa ada penghilangan bising tambahan. Kami mengembangkan aplikasi berbasis mobile bagi pengguna untuk merekam suara burung melalui perekam suara dalam aplikasi, kemudian rekaman tersebut akan dikirim ke back-end dan akan diklasifikasikan menggunakan model CNN untuk menentukan spesies burung tersebut. Dataset yang digunakan untuk penelitian ini dikumpulkan dari basis data kolaboratif Xeno-Canto pada 4 Juni 2020 dengan total 1.163 rekaman suara dari 60 spesies burung berasal dari Taiwan dan beberapa daerah lain. Hasil membuktikan bahwa pengenalan suara burung kami dapat mencapai kinerja yang memuaskan dan stabil. Aplikasi kami membutuhkan sekitar 10 detik untuk keseluruhan proses, termasuk transmisi dari front-end ke back-end, dan sekitar 6 detik untuk proses pengenalan dengan tingkat akurasi mencapai 96,85%. Selain itu, pengenalan suara burung kami mampu mengenali suara burung secara akurat dari rekaman berdurasi minimal 3 detik.
Recognizing birds just by their sound might be a difficult task but it does not mean it is not possible. Convolutional Neural Networks (CNNs) nowadays is really popular as an approach to complete the task. The gap between CNN-based models and shallow, featurebased approaches remained considerably high. Even though many of the recordings were quite noisy, the CNNs worked well without any additional noise removal. We develop a mobile-based application for users to capture a bird sound by the voice recorder in the application, then the input record will be sent to the back-end and will be classified to determine the species of the bird using a CNN model. The dataset used for this research is collected from Xeno-Canto collaborative database on June, 4th 2020 with a total of 1163 sound recordings from 60 species of bird is from Taiwan and some other regions. Results testify that our bird sound recognition can achieve a remarkable and steady performance. It took approximately 10-seconds for the whole process, including transmission between the front-end and the back-end, and about 6-seconds for the recognition process with the accuracy rate being 96.85%. In addition, our bird sound recognition is able to recognize the bird sound accurately from a minimum of 3-seconds length recording."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-Pdf
UI - Tugas Akhir Universitas Indonesia Library