Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Bayu Tri Harsunu
"Kulit udang selama ini di Indonesia hanya dianggap sebagai limbah yang pemanfaatannya masih terbatas. Salah satu alternatif daur ulang limbah kulit udang adalah sebagai sumber khitosan. Melalui proses lanjutan, khitosan dapat dibuat menjadi edible film. Edible film khitosan sedang dikembangkan sebagai pengemas modern yang ramah lingkungan karena dapat langsung dimakan dan terurai oleh alam. Untuk membuat edible film, khitosan dilarutkan dalam pelarut asam asetat glasial 1%. Pembuatan edible film harus melalui proses pengadukan dan pemanasan pada suhu 50°C. Selanjutnya larutan khitosan dituang diatas media cetak akrilik untuk dapat membentuk edible film. Plasticizer dapat ditambahkan untuk mengurangi kerapuhan dan meningkatkan fleksibilitas dan ketahanan film. Pada penelitian ini menggunakan gliserol sebagai plasticizer.
Hasil penelitian menunjukkan untuk analisis ketebalan edible film, diperoleh nilai ratarata berkisar antara 0,018 mm &plusmm; 0,0011 % sampai dengan 0,097 mm &plusmm; 0,0029 %, ketebalan meningkat seiring dengan meningkatnya konsentrasi plasticizer gliserol dan komposisi khitosan. Untuk analisis kekuatan tarik, nilai kuat tarik menurun seiring dengan peningkatan konsentrasi gliserol. Dapat terlihat pada sampel IA sampai dengan ID. Sampel IA (2 gr khitosan, 0,2 ml/gr gliserol), sampel IB (2 gr khitosan, 0,4 ml/gr gliserol), sampel IC (2 gr khitosan, 0,6 ml/gr gliserol), sampel ID (2 gr khitosan, 0,8 ml/gr gliserol), diperoleh nilai rata-rata kuat tarik sebesar 111,130 kgf/cm² &plusmm; 18,378 % makin menurun sampai dengan 18,696 kgf/cm² &plusmm; 2,085 %. Pada analisis uji elongasi, nilai terendah sebesar 5,2000% &plusmm; 0,8367% pada sampel IA dan tertinggi sebesar 32,800% &plusmm; 3,5637% pada sampel IVD (5 gr khitosan, 0,8 ml/gr gliserol).
Pemanjangan edible film meningkat dengan meningkatnya konsentrasi gliserol dan komposisi khitosan yang digunakan. Untuk hasil analisis uji WVTR, diperoleh nilai terendah 165,56 g/m²/24jam &plusmm; 0,14% dan tertinggi 559,48 g/m²/24jam &plusmm; 2,47%. Laju transmisi uap air cenderung meningkat seiring dengan peningkatan konsentrasi gliserol dan komposisi khitosan. Sedangkan pada analisis uji O&sub2;TR, diperoleh nilai yang terendah sebesar 0,32 cc/m²/24jam &plusmm; 0,0004% dan tertinggi sebesar 1, 3 cc/m²/24jam &plusmm; 0,74%. Nilai laju transmisi oksigen yang didapat pada penelitian ini cenderung semakin menurun seiring dengan peningkatan konsentrasi gliserol dan komposisi khitosan.
Berdasarkan hasil penelitian ini, terlihat bahwa peningkatan konsentrasi gliserol dan komposisi khitosan dapat meningkatkan ketebalan, persentase pemanjangan, dan laju transmisi uap air edible film khitosan, namun dapat juga menurunkan nilai laju transmisi oksigen. Untuk uji kuat tarik, nilainya semakin menurun dengan peningkatan konsentrasi gliserol, namun semakin meningkat dengan peningkatan komposisi khitosan.

The shrimp skin in Indonesia is widely known as waste with limited advantages. One of the alternatives is by recycling the shrimp skin as the source of chitosan. In the next process the chitosan can be transformed into edible film. The chitosan edible film is being developed as a modern package which is friendly to our environment because it can be eaten directly and it also can easily absorb by nature. To make the edible film, the chitosan is mixed with the acetat glacial acid 1 %. The making of edible film has to pass the process of stiring and heating on the temperature of 50°C. Next, the chitosan is poured on an acrylic media to be able to form the edible film. Plasticizer can be added to reduce the fragillity and to increase the flexibility and the strength of the film. In this research, the glicerol is used as plasticizer.
The result of the research shows that the thickness of the edible film is between 0,018 mm &plusmm; 0,0011 % to 0,097 mm &plusmm; 0,0029 %, the thickness increases along with the increasing of the concentrate of plasticizer glicerol and the compotition of chitosan. The result of the tensile strength test is that the tensile strength is decreases along with the increasing of the concentrate of plasticizer glicerol. This can be seen from the sample of IA to ID. The IA sample (2 gr chitosan, 0,2 ml/gr glicerol), the IB sample (2 gr chitosan, 0,4 ml/gr glicerol), the IC sample (2 gr chitosan, 0,6 ml/gr glicerol), the ID sample (2 gr chitosan, 0,8 ml/gr glicerol), the average of the tensile strength is 111,130 kgf/cm² &plusmm; 18,378 % decrease until to 18,696 kgf/cm² &plusmm; 2,085 %. On the analysist of elongation, the lowest score is 5,000% &plusmm 0,8367% on sample IA and the highest is 32,800% &plusmm; 3,5637% on the IVD sample (5 gr chitosan, 0,8 ml/gr glicerol).
The length of the edible film increases by the increasing of the concentrate of plasticizer glicerol and the compotition of chitosan being used. For the result of WVTR, the lowest score is 165,56 g/m²/24 hours &plusmm; 0,14% and the highest is 559,48 g/m²/24 hours &plusmm; 2,47%. The water vapor transmission rate tends to increase along with the increasing of the concentrate of plasticizer glicerol and the compotition of chitosan. Meanwhile, on the analysist test of O&sub2;TR, the lowest score is 0,32 cc/m²/24 hours &plusmm; 0,0004% and the highest is 1,33 cc/m²/24 hours &plusmm; 0,74%. The score of oxygen transmission rate which shown in this research tends to decrease along with increasing of the concentrate of plasticizer glicerol and the compotition of chitosan.
Based on these result, to be seen that the increasing of the concentrate of plasticizer glicerol and the compotition of chitosan can increases thickness, percentage of elongation, and water vapor transmission rate chitosan edible film, but it can be decreases score of oxygen transmission rate. For tensile strength test, the score is decreases along with the increasing of the concentrate of plasticizer glicerol but increases along with the increasing of the compotition of chitosan.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41723
UI - Skripsi Open  Universitas Indonesia Library
cover
Kartini Apriliyana Virgine
"Parasetamol merupakan salah satu obat yang paling banyak dikonsumsi masyarakat. Keterbatasan asam asetat anhidrida (AAA) sebagai bahan baku sintesis parasetamol memicu pengembangan reaksi alternatif berbahan baku asam asetat glasial (AAG) dengan memanfaatkan katalis berbasis bentonit alam.
Pengembangan reaksi alternatif ini diawali dengan preparasi katalis, karakterisasi katalis, penentuan katalis terbaik, dan penentuan kondisi operasi dengan melakukan variasi kondisi meliputi suhu, perbandingan molar p-aminophenol (PAP) dan AAG, dan waktu reaksi.
Preparasi bentonit ini menghasilkan 4 jenis katalis, yaitu BA (bentonit alam), BS (bentonit sintetis), HB (H-bentonit), dan ZnB (Zn-Bentonit). Berdasarkan persentase terkonversi, diperoleh dua katalis terbaik untuk reaksi alternatif pada sintesis parasetamol, yaitu BA (dengan konversi PAP 71,79 %) dan BS (dengan konversi PAP 58,20 %).

Paracetamol is commonly and widely used by people as analgesic and antipyretic. The lack of acetic anhydride (AAA) as material in synthesis of paracetamol encourage an alternative method in reaction using acetic acid glacial (AAG) as primary reacting material with natural bentonite as catalyst.
The alternative reaction consist of catalyst preparation, characterization of catalyst, choice of best catalyst, and choice of operation condition with all variation condition in temperature, molar ratio of p-aminophenol and AAG, and reaction time.
Preparation of bentonite gets four kinds of catalyst, which are BA (natural bentonite), BS (activated bentonite), HB (H-bentonite), and ZnB (Zn-bentonite). Concerning the percentage conversion, two best catalysts for this alternative reaction are BA (71.79 %-conversion based on PAP) and BS (58.20 %-conversion based on PAP).
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52267
UI - Skripsi Open  Universitas Indonesia Library
cover
Anisa Ayuningdyas
"Senyawa hidrazon merupakan senyawa yang masuk ke dalam kelas basa Schiff. Hidrazon dan turunannya termasuk kedalam senyawa yang bersifat versatile dan memiliki sifat biologis yang beragam akibat adanya gugus C=N. Hidrazon menjadi salah satu potensial ligan untuk kompleks logam karena memiliki kemampuan koordinasi yang baik sebagai ligan. Pada penelitian ini dilakukan sintesis 5 macam hidrazon yang dikatalisis oleh asam asetat glasial dengan gugus aromatik aldehida yang berbeda, diantaranya 4-metoksibenzaldehida, benzaldehida, 4-hidroksibenzaldehida, sinamaldehida, dan vanilin dengan rendemen secara berturut-turut 94,3%, 70%, 85%, 74,5%, dan 89,4%. Selain itu, terdapat 3 macam hidrazon yang disintesis dengan menggunakan nanokatalis NiO, yaitu hidrazon berbasis 4-metoksibenzaldehida, hidrazon berbasis benzaldehida, dan hidrazon berbasis sinamaldehida dengan rendemen masing masing sebesar 97,24%, 59%, dan 75%. Selanjutnya, kedua ligan dilakukan karakterisasi dengan menggunakan KLT, UV-Vis, dan FTIR. Khusus untuk ligan yang dikatalisis asam asetat glasial dilakukan karakterisasi tambahan berupa LC-MS. Ligan yang telah disintesis direaksikan dengan Zn(CH3COO)2 untuk membentuk senyawa kompleks. Adapun, produk dari senyawa kompleks bejumlah 5 dengan masing masing ligan 4-metoksibenzaldehida, benzaldehida, 4-hidroksibenzaldehida, sinamaldehida, dan vanilin memiliki rendemen secara berturut-turut 52,9%, 33%, 40,9% 51,2%, 86,5%, dan 38%. Senyawa kompleks yang terbentuk dikarakterisasi UV-Vis, FTIR, dan AAS. Pada sintesis ligan dan kompleks dilakukan uji bioaktivitas berupa antioksidan untuk membandingkan potensi antioksidan antara ligan dan senyawa kompleks tersebut.

Hydrazone is a compound from schiff base’s group whose versatile and has diverse biological properties due to the presence of C=N group. Hydrazone has a potential as a ligand of complex compound because they have a good coordination abilities as a ligand. In this research, there are 5 types of hydrazone with acetic acid as a catalyst whose been synthesized with different aromatic aldehyde group which include 4-methoxybenzaldehyde, benzaldehyde, 4-hydroxybenzaldehyde, cinnamaldehyde, and vanillin with yield respectively 94,3%, 70%, 85%, 74,5%, and 89,4%. Meanwhile, there are 3 types of aromatic aldehyde whose been synthesized with NiO nanocatalyst which include 4-methoxybenzaldehyde, benzaldehyde, and cinnamaldehyde with yield respectively 97,24%, 59%, and 75%. These ligand has been characterized with TLC, UV-Vis, FTIR, while there are addition LCMS characterization for ligand with acetic acid glacial as a catalyst. Furthermore, each ligand become a reagent for complexes synthesis and those complex have benn characterize with AAS, FTIR, and UV-Vis. For antioxidant bioactivity there are comparison between ligand and complex."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library