Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19 dokumen yang sesuai dengan query
cover
Arief Budiman
Abstrak :
[ABSTRAK
FPGA merupakan piranti yang bersifat dapat dikonfigurasi-ulang (reconfigurable). Dengan mengambil keuntungan dari paralel hardware, eksekusi FPGA dapat lebih cepat dari pemrosesan DSP(Digital Signal Processor). Disain dan Implementasi Pengenalan wajah menggunakan FPGA, untuk mengidentifikasi citra wajah yang diberikan dengan menggunakan Fitur utama dari wajah. Dalam tesis ini Algoritma Artificial Neural Network metode Back Propagation disajikan, untuk mendeteksi pandangan frontal wajah. Extraksi Penciri citra wajah di lakukan dengan (PCA) dan identifikasi menggunakan Back Propagation. Citra wajah diambil dari 100 At&T Database menghasilkan 90 % acceptance ratio.
ABSTRACT
FPGA is a device that can be re-configured (reconfigurable). By taking advantage of parallel hardware, FPGA execution can be faster than processing DSP (Digital Signal Processor). Design and Implementation of face recognition using FPGA, to identify a given face image using the main features of the face. In this thesis Algorithm Artificial Neural Network Back Propagation method is presented, for detecting frontal view faces. Identifier face image extraction is done by (PCA) and identification using Back Propagation. 100 face images taken from At & T database generates 90% acceptance ratio.;FPGA is a device that can be re-configured (reconfigurable). By taking advantage of parallel hardware, FPGA execution can be faster than processing DSP (Digital Signal Processor). Design and Implementation of face recognition using FPGA, to identify a given face image using the main features of the face. In this thesis Algorithm Artificial Neural Network Back Propagation method is presented, for detecting frontal view faces. Identifier face image extraction is done by (PCA) and identification using Back Propagation. 100 face images taken from At & T database generates 90% acceptance ratio.;FPGA is a device that can be re-configured (reconfigurable). By taking advantage of parallel hardware, FPGA execution can be faster than processing DSP (Digital Signal Processor). Design and Implementation of face recognition using FPGA, to identify a given face image using the main features of the face. In this thesis Algorithm Artificial Neural Network Back Propagation method is presented, for detecting frontal view faces. Identifier face image extraction is done by (PCA) and identification using Back Propagation. 100 face images taken from At & T database generates 90% acceptance ratio., FPGA is a device that can be re-configured (reconfigurable). By taking advantage of parallel hardware, FPGA execution can be faster than processing DSP (Digital Signal Processor). Design and Implementation of face recognition using FPGA, to identify a given face image using the main features of the face. In this thesis Algorithm Artificial Neural Network Back Propagation method is presented, for detecting frontal view faces. Identifier face image extraction is done by (PCA) and identification using Back Propagation. 100 face images taken from At & T database generates 90% acceptance ratio.]
2013
T42694
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Maulana Bisyir Azhari
Abstrak :
Identifikasi sistem dinamik merupakan tahapan awal dalam melakukan perancangan algoritma kendali pada suatu sistem dinamik. Namun, pada sistem dinamik yang multivariabel, tidak linier dan kopling tinggi-seperti pada misil AIM-9L Sidewinder-identifikasi sistem dinamik umumnya akan gagal dan sering terjadi simplifikasi pada sistem yang diidentifikasi, seperti dekopling dan linearisasi sistem. Pada penelitian ini, identifikasi sistem dinamik misil dilakukan dengan menggunakan algoritma artificial neural network dengan harapan karakteristik sistem dinamik tetap terjaga dengan baik. Penerbangan misil dilakukan dengan menggunakan simulator X-Plane dan akuisisi data penerbangannya dilakukan menggunakan bahasa pemrogramman python. Penerbangan dilakukan dengan sinyal referensi swept-sine dan zig-zag untuk mancakup banyak kemungkinan penerbangan misil. Hasilnya, artificial neural networks dapat melakukan pemetaan pola sistem dinamik misil dengan standardized MSE 7.155x10^(-2).
Dynamical system identification is the very first step in designing a control algorithm on a dynamic system. However, in the multivariate, nonlinear and coupled dynamical system-like the AIM-9L Sidewinder missile-dynamical system identifications are often failed and oversimplified the dynamical system, such as decoupling and linearization. In this research, system identification is done by using artificial neural networks algorithm with expectations that its characteristics will be maintained well. The missile flights are done by using the X-Plane flight simulator and the acquisition process is done by using python language. The flights use swept sine and zig-zag references to cover lots of missile flight conditions possibility. As a result, artificial neural networks can do missile dynamical pattern mapping with 7.155x10^(-2) standardized mean squared errors.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimitri Putra Laksyandi
Abstrak :
Penelitian ini bertujuan merancang sistem prediksi churn pelanggan yang memanfaatkan proses data mining. Sistem yang dihasilkan , memprediksi churn pelanggan dan menampilkan hasil prediksi dalam format laporan tertentu yang diperlukan. Identifikasi variabel-variabel prediksi churn dilakukan berdasarkan wawancara dan penelitian terdahulu yang antara lain mencakup informasi mengenai riwayat pelanggan, tagihan, dan data panggilan rinci, Teknik data mining yang dipilih adalah teknik klasifikasi dengan algoritma artificial neural networks. Artificial neural networks menghasilkan model yang merepresentasikan pola perilaku pelanggan yang churn dan tidak churn. Penelitian yang dilakukan menggunakan data pelanggan Flexi Classy daerah Jakarta menghasilkan tingkat akurasi model prediksi dengan error 6,88% untuk dataset validasi.
The purpose of this research is to design a churn prediction model which based on data mining. The result of this research is a model that can predict whether customer is a churner or not and then show us the output of prediction in a certain report. Variables were determined by a discussion with an expert or taken from previous similar research. The variables were taken from customer profile database, billing record database, and call detail record database. Data mining technique that used in this research is artificial neural networks. Artificial neural networks create a model that can show the behaviour of churners and non churners. The research, which use customer data of Flexi Classy who live around Jakarta, created a churn prediction model which have 6,88% error rate (test dataset).
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52360
UI - Skripsi Open  Universitas Indonesia Library
cover
Suhaeri
Abstrak :
Sistem TBL merupakan sistem yang kompleks karena karakteristik kelistrikan dari bahan baku yang berfungsi sebagai beban sangat fluktuatif. Besarnya daya listrik yang sampai ke bahan baku berlangsung secara maksimal, maka panjang busur listrik yang dipancarkan melalui ujung elektroda harus dikendalikan. Pengendalian panjang busur listrik selama ini menggunakan pengendali jenis PI yang diimplementasikan melalui PLC, yaitu dengan mengatur posisi elektroda terhadap bahan baku. Pada tesis ini dibahas suatu pengendali berbasis ANN yang dirancang untuk menirukan pengendali PI yang sudah terpasang. Data yang diperoleh dari pengoperasian sistem pengendali PI yang terdiri dari tiga input dan tiga output digunakan sebagai data pembelajaran ANN. ANN yang dirancang berstruktur Multilayer feedforward Neural Network terdiri dari 3 lapisan yang memiliki 18 neuron pada lapisan input, 18 neuron pada lapisan tersembunyi dan 3 neuron pada lapisan output. Algoritma pembelajaran ANN yang digunakan adalah jenis algoritma Error Back Propagation. Pembelajaran dilakukan dengan mengubah-ubah beberapa parameter pembelajaran : jumlah neuron pada layar tersembunyi, learning rate, jumlah epoch dan momentum. Pembelajaran diulang-ulang sampai mencapai nilai ketelitian (RMS Error) 0,0091. Model ANN yang dihasilkan selanjutnya diuji dan dibandingkan dengan menggunakan data yang berbeda yang dihasilkan oleh pengendali PI. Dari hasil uji diperoleh bahwa pengendali berbasis ANN dapat menirukan pengendali PI dengan nilai ketelitian rata-rata 0,0316 dari tujuh interval data pengoperasian yang digunakan sebagai data uji. Hal ini dapat dikatakan bahwa model pengendali ANN tersebut dapat mengikuti perilaku pengendali PI yang sudah terpasang.
Depok: Fakultas Teknik Universitas Indonesia, 2001
T8146
UI - Tesis Membership  Universitas Indonesia Library
cover
Indira Untari
Abstrak :
Perkembangan teknologi yang sangat pesat di bidang kelistrikan saat ini adalah pemanfaatan distributed generation khususnya PLTS Atap atau dikenal dengan PV Rooftop. Pelanggan memanfaatkan energi listrik dari PV Rooftop untuk kebutuhan listriknya dan juga dapat mentransfer energinya (eksport) ke system kelistrikan PLN jika energi dari PV Rooftop berlebih. Sedangkan PLN tetap mengirimkan energi ke pelanggan jika energi dari PV tidak memenuhi konsumsi listriknya (import). Dengan ketersediaan data smart-meter orde jam beban pelanggan PV Rooftop, maka optimalisasi data untuk keperluan data scientist, data analyst, dan data engineer sehingga informasi data ini dapat dignakan untuk manajemen energi yang efisien dan andal. Peralaman beban untuk pelanggan PV menjadi masalah yang sulit dipecahkan dikarenakan beragamnya tipe penggunaan listrik (konsumsi listrik) dan ketidakpastian faktor eksternal (cuaca) karena penggunaan sumber energi terbarukan (energi matahari) sehingga menimbulkan celah dalam akurasinya. Untuk memecahkan masalah tersebut, penelitian ini menggunakan pendekatan machine-learning yaitu Jaringan Syaraf Tiruan (Artificial Neural Network-ANN) pada MATLAB® dengan algoritma pembelajaran backpropagation dan fungsi aktivasi sigmoid untuk menghasilkan model peramalan beban  orde jam meliputi hari kerja dan hari libur pada pelanggan PV per segment tarif (Pelanggan Rumah Tangga, Pelanggan Bisnis, Pelanggan Industri, Pelanggan Sosial dan Pelanggan Pemerintah). dengan mempertimbangkan variasi konsumsi listrik dan temperatur. Lingkup pengambilan data penelitian dibatasi beban listrik pada pelanggan di Jakarta dan sampling dilakukan selama bulan Juli s/d Oktober 2019. Hasil penelitian ini memperlihatkan bahwa prediksi ANN menghasilkan kinerja dengan Mean Square Error (MSE) sebesar 2%. Prediksi beban listrik tanggal 21 s/d 27 Oktober 2019 memperlihatkan rata-rata error ANN adalah 21%, sedangkan rata-rata error metode regresi adalah 39%. Dengan demikian dapat disimpulkan bahwa prediksi beban listrik menggunakan ANN lebih akurat sebesar 20% dibandingkan dengan metode regresi oleh PLN. Berdasarkan analisis keekonomian, pelanggan mendapatkan efisiensi biaya listrik sebesar 21%, sedangkan PLN berkurang pendapatan sebesar ± Rp. 300 juta/bulan. Strategi manajemen yang diusulkan dengan mempertimbangkan benefit kedua pihak (PLN dan Konsumen) adalah dengan keterlibatan PLN sebagai integrator (sisi hulu dan sales), ketelibatan Pemerintah dan keterlibatan dukungan Bank sebagai
The very rapid technological development in the electricity sector at present is the use of special distributed PLTS known as PV Rooftop. Customers use energy from the PV for their electricity needs and can also transfer their energy (export) to the PLN electricity system if the energy from their PV is excessive. While PLN continues to send energy to customers if using energy from PV does not meet its electricity consumption (imports). While the avaibility of fine-grained smart meter data for PV customers load, optimization could be done for the needs of data scientists, data analysts and data engineers makes this data information usable for efficient and reliable energy management. Forecasting the PV Customer load, however, can be an intractable problem. These loads are characterized by uncertainty and variations due to the use of renewable energy sources (solar energy), leaving much room to improve accuracy. To improve the PV customer load forecast accuracy, this paper advocates a machine-learning tool called Artificial Neural Network (ANN) on MATLAB® with backpropagation learning algorithm and sigmoid activation, include load forecasting per tariff segment (Household Customers, Business Customers, Industrial Customers, Social Customers and Government Customers). The scope of the study took data on electricity loads to customers in Jakarta and sampling was conducted from July to October 2019. The test results show that ANN deterministic load forecasting model can achieve satisfactory performance with the mean square error (MSE) of 2% . Electricity load predictions from 21 to 27 October 2019 have an average error of ANN is 21%, while the average error of the regression method is 39%. Thus it can be concluded that the estimated cost of using ANN electricity is more accurate by 20% compared to the regression method by PLN. Based on economic analysis, customers get electricity cost efficiencies of  21%, while PLN reduces revenue by ±Rp. 300 million/month. The proposed management strategy by considering the benefits of both parties (PLN and Consumers) is to involve PLN as an integrator (upstream and sales side), Government involvement and involvement of Bank supporters as lenders.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T54037
UI - Tesis Membership  Universitas Indonesia Library
cover
Steven Pratama
Abstrak :
ABSTRAK
Transmisi kopling ganda adalah salah satu teknologi transmisi yang menggabungkan antara transmisi otomatis dan transmisi manual pada kendaraan. Hal yang krusial pada sistem transmisi ini adalah proses pemilihan gigi sebelum gigi transmisi berpindah, yang dikenal dengan proses gear preselect. Penelitian ini menggunakan sistem Jaringan Saraf Tiruan untuk mengatur perpindahan gigi kendaraan dari gigi 1 ke gigi ke 2 dengan menggunakan model kendaraan BMW M3 E92 tahun 2015. Simulasi menggunakan JST dengan 2 lapisan jaringan tersembunyi dengan 10 neuron pada tiap jaringan tersembunyi. Hasil simulasi menunjukkan bahwa terdapat perbedaan akselerasi dan penggunaan bahan bakar. Akselerasi kendaraan dengan menggunakan JST adalah 5.83 m/s2 dan tanpa JST sebesar 3.83 m/s2. Sementara konsumsi bahan bakar sebesar 274.5 ml untuk kendaraan tanpa kendali JST selama 4 s dan untuk kendaraan dengan kendali JST 83.03 ml selama 4 s, dengan selisih sebesar 191.5 ml atau rata ndash; rata 3.77 ml per meter. Selisih ini menunjukkan konsumsi bahan bakar tanpa kendali JST lebih boros sebesar 40.49 per meter.
ABSTRACT
Double clutch transmission is one of the transmission technology that combines automatic transmission and manual transmission on the vehicle. The crucial thing in this transmission system is the process of selecting the teeth before the transmission gear shifts, known as the preselect gear process. This research uses Artificial Neural Network system to adjust the gearshift of vehicle from first gear to second gear using BMW M3 E92 vehicle model 2015. Simulation using ANN with 2 layer of hidden network with 10 neuron in each hidden network. The simulation results show that there is a difference in acceleration and fuel consumption. Acceleration of vehicles using ANN is 5.83 m s2 and without ANN of 3.83 m s2. While fuel consumption of 274.5 ml fuel usage for vehicle without ANN control for 4 s and for vehicles with control of ANN 83.03 ml for 4 s, with difference of 191.5 ml or average 3.77 ml per meter. This difference shows that fuel consumption without ANN control is more extravagant at 40.49 per meter.
2017
T47952
UI - Tesis Membership  Universitas Indonesia Library
cover
Prima Dewi Purnamasari
Abstrak :
Terdapat dua masalah besar yang diselesaikan dalam disertasi ini, yaitu masalah pemrosesan sinyal dan masalah aplikasi sinyal EEG dalam pengenalan keadaan emosi. Masalah tersebut diselesaikan dengan metode kecerdasan komputasional yang terdiri dari bagian utama, ekstraksi fitur dan klasifikasi. Pada bagian ekstraksi fitur, pada disertasi ini dibahas penggunaan metode konvensional ekstraksi fitur berbasis power spectrum yaitu dengan Discrete Wavelet Transform DWT , dan penggunaan metode baru ekstraksi fitur yang diajukan yaitu analisis bispektrum dengan filter piramida 3D, serta dengan Relative wavelet bispectrum RWB. Untuk menyelesaikan permasalahan penerapannya pada sistem otomatis pengenal emosi, maka classifier dengan jenis Artificial Neural Network ANN digunakan.Penggunaan DWT dalam metode ekstraksi fitur menunjukkan bahwa fitur Relative Wavelet Energy DWT RWE memberikan recognition rate terbaik, konsep energi relatif ini kemudian digunakan pada metode baru yang diajukan. Pada metode baru ekstraksi fitur menggunakan analisis bispektrum dengan filter piramida 3D, diketahui bahwa persentase mean bispektrum memberikan recognition rate yang terbaik dengan kompleksitas yang lebih rendah 74.22 untuk arousal dan 77.58 untuk valence. Filter non-overlap dengan ukuran alas yang bervariasi memberikan recognition rate tertinggi, khususnya secara signifikan terlihat untuk jenis emosi arousal. Penurunan jumlah channel EEG sampai dengan 8 channel dapat dilakukan untuk menurunkan biaya komputasi. Metode baru ekstraksi fitur yaitu RWB telah diajukan dalam disertasi ini dan menunjukkan pengenalan yang sangat baik mencapai 90 untuk data sinyal EEG orang alkoholik. Semakin besar lag yang digunakan dalam perhitungan korelasi, semakin tinggi recognition rate yang diperoleh. Capaian dari penelitian ini membuktikan bahwa RWB cocok untuk digunakan sebagai metode ekstraksi fitur untuk klasifikasi orang alkoholik, dan dapat dipertimbangkan untuk digunakan pada aplikasi lainnya. Dari keempat classifier yang diujikan, dari segi recognition rate, PNN sedikit lebih unggul daripada BPNN, namun uji sensitivity, specificity dan PPV serta grafik ROC menunjukkan bahwa BPNN merupakan classifier yang lebih baik dibanding PNN. Di sisi lain, waktu komputasi PNN untuk mencapai recognition rate maksimum adalah sekitar 3,5 kali lebih cepat dibanding BPNN.
There are two major problems resolved in this dissertation, which are signal processing problem and the problem in EEG signal in the application of recognizing human emotional states. The problems were solved by applying a computational intelligence method consists of two main parts, the feature extraction and the classification. In the feature extraction sub system, this study improved a conventional methods using power spectrum from discrete wavelet transform DWT, and proposed a new method for feature extraction by using bispectrum analysis with 3D pyramid flter, as well as using relative wavelet bispectrum RWB. To solve the problem in the application of EEG signal for automatic emotion recognition system, the artificial neural network ANN classifier was used.The use of DWT in the feature extraction method shows that the relative wavelet energy DWT RWE feature provides the best recognition rate, the relative energy concept was then used in the proposed new feature extraction methods. In the proposed feature extraction using bispectrum analysis with 3D pyramid filters, the mean percentage of bispectrum feature gave the best recognition rate with lower complexity i.e. 74.22 for arousal and 77.58 for valence. Non overlap filters with varied base sizes provided the highest recognition rate, and significantly seen for the arousal emotion. The selection of eight EEG channels can be conducted to lower the cost of computing. A novel feature extraction method, the RWB, showed an excellent recognition for the alcoholic person. The larger the lag used in the correlation calculation in RWB, the higher the recognition rate obtained. The achievements of this study proved that RWB is suitable as a feature extraction method for the classification of alcoholic subjects, and may be considered for use in other applications.Of the four classifiers tested, PNN is slightly superior to BPNN in terms of recognition rate however, the sensitivity, specificity and PPV tests and ROC graph shown that BPNN is a better classifier than PNN. On the other hand, the PNN computing time to reach the maximum recognition rate was about 3.5 times faster than BPNN.
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2271
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Fathi Fadlian
Abstrak :
Pengendalian pesawat terbang merupakan suatu tahap terpenting dalam pengembangan teknologi aviasi yang hanya dapat dilakukan jika memiliki data penerbangan dan model pesawat. Pengambilan data penerbangan dilakukan menggunakan simulator penerbangan ultra-realistis, X-Plane. Algoritma Neural Networks dipilih sebagai metode untuk memodelkan dan mengidentifikasi sistem pesawat terbang juga sebagai pengendali sistem tersebut yang akan terbentuk dalam sebuah kesatuan Direct Inverse Control. Pengujian dan pembelajaran open loop pada sistem Direct Inverse Control dilakukan untuk mengetahui keandalan sistem kendali yang dirancang. Batasan pada penelitian ini adalah kondisi cruising ideal dimana merupakan kondisi terbang pesawat yang memakan hampir 90% dari total penerbangan. Dari hasil pengujian dapat diketahui bahwa data yang dihasilkan simulator sesuai dengan dinamika pergerakan pesawat terbang pada kondisi cruising dan sistem kendali yang dibuat memiliki keandalan yang baik. ......Flight control is the most important stage in the development of aviation technology which can only be done if flight data and aircraft models have been acquired. Flight data acquisition is carried out using an ultra-realistic flight simulator, X-Plane. Neural Networks algorithm is chosen as a method for modeling and identifying aircraft systems as well as controlling the system which will be formed in a Direct Inverse Control unit. Open loop testing and learning in the Direct Inverse Control system is carried out to determine the reliability of the designed control system. The limit of this study is in the ideal cruising conditions which consume almost 90% of total flights time. From the test results, it can be seen that the data generated by the simulator is in accordance with the dynamics of aircraft movements in cruising conditions and the designed control system has good reliability.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sameera Ramadhani
Abstrak :
Ketidakpastian jumlah penumpang pesawat meningkat karena kenaikan tren penggunaan pesawat sebagai pilihan moda transportasi di Indonesia beberapa tahun kebelakang. Hal ini menyebabkan dibutuhkannya kemampuan untuk mengakomodasi kenaikan tersebut bagi perusahaan penerbangan untuk mempertahankan posisinya dalam industri. Pembuatan strategi sangat dipengaruhi oleh keakuratan prediksi. Karena itu, model prediksi yang akurat sangat dibutuhkan. Penelitian ini menggunakan metode neural networks yang telah teruji sebagai metode berbasis data mining dengan hasil akurasi lebih tinggi dibandingkan dengan metode tradisional untuk membuat model terbaik untuk memprediksi jumlah penumpang pesawa. Sebagai perbandingan, metode Autoregressive Integrated Moving average (ARIMA) akan digunakan. Objek dari penelitian ini adalah data jumlah penumpang bulanan dari salah satu perusahaan penerbangan di Indonesia, berfokus pada dua rute utama dengan keuntungan terbesar yaitu rute Jakarta-Yogyakarta (CGK-JOG) dan rute Jakarta-Singapura (CGK-SIN), dimana masing-masing rute ini merepresentasikan rute domestik dan rute internasional. Prediksi selama 12 periode ke depan akan dilakukan dengan model terbaik dari masing-masing metode. Nilai mean absolute percentage error (MAPE) akan dibandingkan dan Theil’s U Statistic akan dilihat untuk menilai apakah model sudah representatif. Pada kedua rute, dapat dilihat bahwa metode neural networks menghasilkan nilai error yang lebih baik daripada ARIMA dengan nilai MAPE sebesar 1.29% untuk rute CGK-JOG dan 1.66% untuk rute CGK-SIN.
Demand uncertainty has been increasing as a result of the rising trend of using airplanes as a transportation mode option in Indonesia over the years. This condition results in the need for the ability to accommodate the rise for airline companies to withstand within the industry. Strategy formulation is highly determined by the forecast accuracy. Thus, accurate forecasting models are highly required. In this study, neural network is proposed to create the best-fitted model to predict future values. Neural network is a data mining-based approach that has already been tested to result in more accurate predictions than traditional methods. As a comparison with the traditional model, Autoregressive Integrated Moving Average (ARIMA) model is applied. This study used monthly passenger data from Indonesian airlines, focused on Jakarta-Yogyakarta (CGK-JOG) and Jakarta-Singapore (CGK-SIN) routes which are the representatives of the most profitable route for both domestic and international flight. MAPE of both methods were then compared and Theil’s U Statistic were calculated to see whether the models are suitable. Forecasted future demand for the next 12 months were calculated, where in both routes neural network produced better value than ARIMA with MAPE of 1.29% for CGK-JOG route and 1.66% for CGK-SIN route.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>