Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Pierre Wolter Winowatan
Abstrak :
Pembuatan komposit Li4Ti5O12-Sn nano/Grafin telah berhasil dilakukan sebagai material anoda pada baterai ion litium. Penambahan material grafin komersial dengan variasi berat 1%, 3% dan 5% dan waktu sonikasi selama 45 menit dan 75 menit telah dilaksanakan. Sintesis dari  Li4Ti5O12 dilakukan dengan membuat prekursor TiO2 menggunakan metode sol-gel dan sudah dikalsinasi yang dicampurkan dengan LiOH dengan metode solid-state reaction dan proses sintering. Material Li4Ti5O12 dicampurkan dengan serbuk Sn nano dengan berat 10% untuk mendapatkan material komposit Li4Ti5O12-Sn nano. Pembuatan komposit Li4Ti5O12-Sn nano/Grafin dimulai dari penambahan variasi berat grafin komersial yang berbeda dengan metode wet milling menggunakan planetary ball mill selama 1 jam dan dilanjutkan dengan proses sonikasi menggunakan ultrasonic homogenizer dengan variasi waktu berbeda sebelum akhirnya dilakukan kalsinasi menggunakan vacuum furnace dengan gas N2 pada temperatur 500°C selama 5 jam. Hasil penelitian menunjukan bahwa adanya peningkatan performa dilihat dari kapasitas spesifik dari komposit Li4Ti5O12-Sn nano dengan penambahan berat grafin yang optimum pada 5% dengan waktu sonikasi 75 menit walaupun terdapat beberapa pengotor yang terdeteksi pada hasil pengujian XRD. Secara umum performa baterai sangat baik pada siklus yang tinggi dengan pengurangan discharge capacity yang minor dan dengan penambahan grafin dapat meningkatkan kapasitas spesifik dari material komposit Li4Ti5O12-Sn nano. ......The synthesis of Li4Ti5O12-Sn nano/Graphene composite has been successfully carried out as an anode material for lithium-ion battery. The addition of commercial graphene with a weight variation of 1%, 3% and 5% and sonication time of 45 minutes and 75 minutes has been done successfully. Synthesis of Li4Ti5O12 is done by making TiO2 precursors using sol-gel method and has been calcined, followed by solid-state reaction with LiOH sintering process. The Li4Ti5O12 material is mixed with Sn nano powder with a weight of 10% to obtain L4Ti5O12-Sn nano composite material. Production of Li4Ti5O12-Sn nano/Graphene composites start from mixing different commercial graphene weight variations by wet milling method using planetary ball mill for 1 hour and continued with sonication process using ultrasonic homogenizer with different time variations before calcination process using a vacuum furnace with N2 gas at 500°C for 5 hours. Li4Ti5O12-Sn nano with an optimal maximum weight at 5% with a sonication time of 75 minutes including some impurities reported on the XRD results. In general, the battery samples are very good at high cycles with overall small capacity fade.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Inez Togina Yuniaty
Abstrak :
ABSTRAK Anoda korban Al-Zn-In adalah paduan yang paling umum digunakan untuk memproteksi struktur terutama baja di lingkungan air laut dari korosi. Akan tetapi, paduan ini memiliki potensial yang sangat negatif sehingga bisa memicu terjadinya hydrogen embrittlement atau stress corrosion cracking (SCC) pada struktur baja. Dengan menurunkan potensial yang diaplikasikan pada struktur dalam range sekitar -0.80V sampai -0.85V vs SCE akan menurunkan jumlah hidrogen bebas yang bisa memicu terjadinya SCC. Dua macam unsur paduan ditambahkan untuk mengurangi keelektronegativan potensial dari paduan Al-5Zn. Unsur-unsur tersebut adalah tembaga dan silikon dengan variasi komposisi 0.5wt% dan 1wt%. Penelitian bertujuan untuk memilih unsur paduan yang lebih baik yang mendekati kriteria anoda korban aluminium bertegangan rendah yang dibutuhkan. Electrochemical Impedance Spectroscoy (EIS), Cyclic Polarization, dan pengukuran potensial sistem digunakan untuk mengkarakterisasi paduan baru dari anoda korban aluminium bertegangan rendah. Berdasarkan pengujian-pengujian diatas, paduan Al-5Zn-1Cu adalah paduan yang paling efektif untuk memproteksi baja dengan nilai potensial baja setelah di coupling dengan paduan tersebut adalah -0.81V vs SCE dan nilai Rctnya terkecil dari semua paduan yaitu 1,12 kΩ yang menandakan transfer muatan antar logam dan elektrolit lebih mudah terjadi.
ABSTRACT Al-Zn-In sacrificial anode is commonly used to protect structure especially steel in seawater from general corrosion or galvanic corrosion. However, this alloy is too electronegative and can induce hydrogen embrittlement or SCC in steel. Decreasing the applied potential to the structure in suitable range around -0.80 V until -0.85V vs SCE can reduce the amount of free hydrogen that can make SCC. Two kind of alloying element are added to reduce the electronegative potential of Al-5Zn alloy. Those elements are copper and silicon with the amount of addition is 0.5wt% and 1wt%. This research was trying to select the best alloying that close to the determine requirements. Electrochemical impedance spectroscopy (EIS), cyclic polarization, and system potential measurements were used to characterize new alloy aluminium sacrificial anode low voltage. Among those various alloy tested, Al-5Zn-1Cu is the most proper result of the new low voltage aluminium sacrificial anode because the Rct was smallest (1,12kΩ) and the potential of steel after coupling with Al-5Zn-1Cu was -0.811V vs SCE. These potential is the closest one with the require potential for low voltage aluminium sacrificial anode.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63576
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahid Muhamad Furkon Rahmatulloh
Abstrak :
[ABSTRAK Li4Ti5O12/Si merupakan kandidat material menjanjikan dalam mengoptimalkan karakteristik Si dan Li4Ti5O12 sebagai material anoda pada Baterai Ion Lithium. Pembuatan Li4Ti5O12/Si dengan penambahan silikon sebesar 2 wt.%, 5 wt.%, dan 10 wt.% telah berhasil dilakukan. Partikel Silikon yang ditambahkan mempunyai ukuran 81 nm sebesar 66,7% dan 4100 ? 7500 nm sebesar 2,5 %. Proses sol-gel digunakan untuk membuat xerogel TiO2/Si dari bakalan titanium tetrabutoksida. Serbuk TiO2/Si didapatkan dengan memberikan perlakuan panas xerogel TiO2/Si pada suhu 300oC di dalam tube furnace dengan kondisi aerasi. Pencampuran serbuk TiO2/Si dengan Li2CO3 dilakukan dengan menggunakan High Energy Ball Mill. Perlakuan panas diberikan pada campuran serbuk tersebut pada suhu 650oC di dalam tube furnace dengan kondisi aerasi untuk mendapatkan serbuk Li4Ti5O12/Si. Karakteristik xerogel TiO2/Si, serbuk TiO2/Si, dan serbuk Li4Ti5O12/Si didapat dengan melakukan uji SEM-EDS, XRD, dan BET. Hasil yang didapat bahwa penambahan silikon akan mempengaruhi morfologi pembentukan TiO2 dan Li4Ti5O12 sehingga berpengaruh pada luas permukaan yang dihasilkannya, dimana luas permukaan maksimal pada 10 wt.% untuk xerogel TiO2/Si, 0 wt.% untuk serbuk TiO2/Si, dan 10 wt.% untuk serbuk Li4Ti5O12/Si. Selain itu, kristalinitas TiO2 tidak berubah secara signifikan dan kristalinitas Li4Ti5O12 menurun seiring dengan meningkatnya penambahan silikon. Karakteristik thermal serbuk Li4Ti5O12/Si didapatkan dengan melakukan pengujian STA. Hasil yang didapat bahwa panambahan silikon meningkatkan suhu transformasi material dan mengurangi pengurangan massa yang terjadi.
ABSTRACT , Li4Ti5O12/Si is a promising candidate material in optimizing the characteristic of Si and Li4Ti5O12 as anode material in Lithium Ion Batteries. Li4Ti5O12/Si with the addition of silicon at 2 wt.%, 5 wt.%, and 10 wt.% have been successfully manufactured. Silicon particles size was about 81 nm as much as 66.7% and 4,100 – 7,500 nm as much as 2.5%. Sol-gel process was used to create a TiO2/Si xerogel with titanium tetrabutoxside as a precursor. TiO2/Si powder was obtained by providing heat treatment TiO2/Si xerogel at 300oC in a tube furnace with aeration conditions. TiO2/Si powder and Li2CO3 powder were mixed by using the High Energy Ball Mill. The heat treatment was given to the powder mixture at 650oC in a tube furnace with aeration conditions to obtain Li4Ti5O12/Si powder. Characteristics of TiO2/Si xerogel, TiO2/Si powder, and Li4Ti5O12/Si powder were obtained by using SEM-EDS, XRD, and BET characterizations. The addition of silicon affected the morphology formation of TiO2 and Li4Ti5O12 so the effect on the resulting surface area which the maximum surface area at 10 wt.% on TiO2/Si xerogel, 0 wt.% on TiO2/Si powder, and 10 wt.% on Li4Ti5O12/Si powder. In addition, the cristallinity of TiO2 did not change significantly and the cristallinity of Li4Ti5O12 decreased with increasing addition of silicon particles. Thermal characteristics of the Li4Ti5O12/Si powder was obtained by using STA characterizations. The addition of silicon particles increased the transformation temperature of the material and reduce weight loss that occurs.]
2015
S60673
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Priyono
Abstrak :
Lithium Titanate (Li4Ti5O12) or (LTO) has a potential as an anode material for a high performance lithium ion battery. In this work, LTO was synthesized by a hydrothermal method using Titanium Dioxide (TiO2) xerogel prepared by a sol-gel method and Lithium Hydroxide (LiOH). The sol-gel process was used to synthesize TiO2 xerogel from a titanium tetra-n-butoxide/Ti(OC4H9)4 precursor. An anatase polymorph was obtained by calcining the TiO2 xerogel at a low temperature, i.e.: 300oC and then the hydrothermal reaction was undertaken with 5M LiOH aqueous solution in a hydrothermal process at 135oC for 15 hours to form Li4Ti5O12. The sintering process was conducted at a temperature range varying from 550oC, 650oC, and 750oC, respectively to determine the optimum characteristics of Li4Ti5O12. The characterization was based on Scanning Thermal Analysis (STA), X-ray Powder Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) testing results. The highest intensity of XRD peaks and FTIR spectra of the LTO were found at the highest sintering temperature (750oC). As a trade-off, however, the obtained LTO/Li4Ti5O12 possesses the smallest BET surface area (< 0.001 m2/g) with the highest crystallite size (56.45 nm).
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:4 (2015)
Artikel Jurnal  Universitas Indonesia Library