Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Aisha Betalia
Abstrak :
LTO atau Li4Ti5O12 litium titanat merupakan suatu senyawa yang digunakan sebagai komponen anoda dalam baterai Li-ion. Anoda LTO digunakan karena memiliki sifat zero strain dan juga tidak menghasilkan SEI Solid Electrolyte Interphase yang dimana menyebabkan rendahnya performa baterai. Namun, LTO juga memiliki masalah yaitu kapasitasnya yang rendah. Untuk mengatasi masalah ini, LTO perlu dikombinasikan dengan material lain yang memiliki kapasitas tinggi seperti karbon aktif dan Sn. Selain itu, dengan membuat LTO menjadi bentuk nanorod pun juga akan meningkatkan performa baterai. LTO nanorod disintesis dengan metode hidrotermal di dalam larutan NaOH 4 M. Kemudian LTO nanorod yang telah disintesis dicampur dengan Sn yang bervariasi, yaitu 5, 10, dan 15 wt , serta 5 wt karbon aktif. Komposit LTO nanorod/Sn-CA tersebut kemudian dikarakterisasi menggunakan XRD, SEM-EDS, dan BET. Performa baterai juga diuji menggunakan pengujian EIS, CV, dan CD. Hasil penelitian menunjukkan bahwa kapasitas tertinggi didapatkan oleh LTO nanorod/15 Sn-CA yaitu sebesar 127,24 mAh/g. Dari penelitian ini dapat disimpulkan bahwa LTO nanorod/15 Sn-CA dapat digunakan sebagai alternatif untuk komponen anoda.
LTO or Li4Ti5O12 lithium titanate is a compound that is used as an anode component in lithium ion battery. LTO anode is used because it has zero strain properties and doesn rsquo t produce SEI solid electrolyte interphase which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon AC and Sn. Making the LTO to be nano sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods is synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods is mixed with various Sn 5wt , 10wt , and 15wt and 5wt activated carbon. LTO nanorods Sn AC composite was characterized using XRD, SEM EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods AC 15wt Sn with 127.24 mAh g. This result shows that LTO nanorods AC 15wt Sn could be used as an alternative for anode component.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoyok Dwi Setyo Pambudi
Abstrak :
ABSTRAK
Logam transisi oksida (MxOy,M = Co, Fe, Cu, Zn) menarik untuk dijadikan material baru sebagai anoda baterai ion lithium karena secara umum mempunyai kapasitas spesifik lebih besar dari material grafit. Diantara logam logam transisi tersebut ZnO mempunyai kelebihan karena mempunyai kapasitas teoritis yang yang tinggi sekitar 978 mAh/g atau setara tiga kali dari grafit seperti yang dipakai pada baterai ion lithium dewasa ini. Kelebihan lain dari ZnO adalah tidak beracun, ketersediaannya banyak dan murah dalam preparasi. Selain itu ZnO mempunyai band gap yang lebar (3,37 eV pada suhu kamar), mobilitas elektron tinggi (100 cm2/Vs) dan ikatan energi yang besar (60 meV) sehingga yang telah banyak digunakan di banyak aplikasi seperti semikonduktor, bahan konduktor transparan, biosensor dan bahan anoda dari baterai lithium-ion. Secara khusus, struktur nano ZnO telah menarik banyak perhatian karena sifat unik dan kemungkinan penerapannya di bidang yang luas. Tetapi penerapan material ZnO sebagai anoda baterai ion lithium juga mempunyai kelemahan karena terjadinya ekspansi volume selama proses charge dan discharge yang akan menyebabkan kerusakan material anoda tersebut dan berakibat pada turunnya kapasitas baterai. Maka dilakukan pengendalian morfologi terhadap struktur ZnO dalam bentuk microrods yang ditumbuhkan pada substrat tembaga (Cu foils) dengan menggunakan metode kimia basah atau chemical bath deposition (CBD) pada suhu rendah. Parameter yang diamati adalah keseragaman, densitas dan diameter ZnO microrods hingga didapatkan kondisi optimum untuk pertumbuhan ZnO. Efek annealing temperatur pada pertumbuhan ZnO microrods dan kristalisasi selanjutnya diteliti. Ukuran, keselarasan dan keseragaman ZnO microrods dievaluasi dengan pemindaian mikroskop elektron (SEM dan HRSEM), sedangkan untuk analisis struktural dilakukan dengan teknik X-ray difraksi (XRD). Hasil penelitian menunjukkan bahwa suhu anil berpengaruh secara signifikan terhadap pertumbuhan microrods ZnO. Dengan melalui sejumlah pengujian terhadap struktur dan morfologi di dapatkan bahwa parameter eksperimental yang baik dicapai dengan menggunakan 3 (tiga) lapisan benih, anil pada suhu 150oC dalam waktu 10 menit anil, memberikan diameter rata-rata 218 nm, ukuran kristal 50,16 nm dan densitas 5,05 microrods μm2. Ukuran kristalit terbesar (65,34 nm) diperoleh pada suhu anil pada suhu 100oC dan 10 menit waktu anil. Citra SEM dan HRSEM pada semua sampel yang diuji menunjukkan bahwa ZnO microrods berhasil ditumbuhkan pada substat lembaran tembaga dengan diameter 200 900 nm. Hasil CV memperlihatkan bahwa kapasitas spesifik tertinggi sebesar didapatkan oleh sampel ZnO150 dengan nilai kapasitas spesifik sebesar 811 mAh/gr untuk discharge dan 773 mAh/gr untuk charge pada pengisian densitas arus 0.5 A/g Sedangkan kapasitas spesifik terendah didapat pada sampel ZnO50 dengan nilai kapasitas spesifik sebesar 572 mAh/gr untuk discharge dan 562 untuk charge. Sedangkan untuk ketahanan siklus didapatkan oleh sampel ZnO100 dengan kapasitas retensi 94% pada siklus ke 80 dan ZnO 150 dengan kapasitas retensi 82 %. Dari pengujian rate capabilities, baterai ZnO memiliki kemampuan discharge dan charge dari 0,1 C hingga 2C. Hal ini menunjukkan bahwa telah tercapai tujuan penelitian yaitu sebagai pengembangan awal anoda ZnO microrods sebagai anoda baterai ion lithium dengan kapasitas spesifik yang tinggi.
ABSTRACT
Transition-metal oxides (MxOy, M = Co, Fe, Cu, Zn) are such an attractive new materials for lithium ion battery anodes, as they generally have bigger specific capacity than graphite materials. Among the transition metals, ZnO have an advantage of their high theoretical capacity for about 978 mAh/g which are three times the equivalent of graphite used in today's lithium ion batteries. Another advantage of ZnO is non-toxic. Its availability is abundant and cheap in preparation. In addition, ZnO as a semiconductor material has a wide band gap (3.37 eV at room temperature), high electron mobility (100 cm2/Vs) and large energy bonds (60 meV) so that it has been widely used in many applications, including transparent conductors, biosensors and anode materials from lithium-ion batteries. In particular, the ZnO nanostructure has attracted much attention due to its unique nature and its possible application in a wide field. The various nanostructures of ZnO have been synthesized using different approaches. In this work, the liquid chemical deposition facile (CBD) of ZnO microrods on copper (Cu) foils was studied. During synthesis, we control the uniformity, density and diameter of ZnO microrods to determine the optimum conditions. The effects of temperature annealing on the growth of ZnO microrods and crystallization were further investigated. The size, alignment and uniformity of ZnO microrods were evaluated by scanning electron microscopy (SEM), while for structural analysis performed by XRD technique. The results showed that the annealing temperature significantly affected the growth of ZnO microrods. We found excellent experimental parameters achieved by using 3 (three) seed layers, annealing at 150 ° C within 10 minutes annealing, giving an average diameter of 218 nm, a crystal size of 53.29 nm and a density of 5.05 microrods / μm2. The largest crystal size ( 65.34 nm) was obtained at annealing temperatures at 100 ° C and 10 minutes anneal time. The SEM and HRSEM images in all samples tested showed that ZnO microrods were successfully grown on copper sheet substrates with diameters of 200-900 nm. The CV results show that the highest specific capacity is obtained by the ZnO150 sample with a specific capacity value of 811 mAh/gr for discharge and 773 mAh/gr for charging the current density of 0.5 A/g. While the lowest specific capacity was obtained in the ZnO50 sample with a specific capacity value of 572 mAh/gr for discharge and 562 for charge. While for cycle resistance obtained by the sample ZnO100
2018
D2579
UI - Disertasi Membership  Universitas Indonesia Library
cover
Said Firdaus
Abstrak :
Litium Titanat (LTO) merupakan salah satu material anoda dengan performa yang baik karena sifatnya yang zero - strain. Pada penelitian ini sintesis LTO dilakukan dengan menggunakan metode solid-state dimana menggunakan serbuk LiOH dan TiO2 sebagai prekursor. Akan tetapi, LTO memiliki kapasitas yang cukup rendah. Penambahan Silikon Karbida (SiC) dilakukan untuk meningkatkan kapasitas dan stabilitas kapasitas pelepasan pada LTO. Penambahan SiC dilakukan setelah proses sintesis LTO selesai menggunakan metode wet ball mill. Hasil sintesis menghasilkan serbu berwarna keabuan. Serbuk LTO/SiC dikarakterisasi menggunakan difraksi sinar-X (XRD), SEM-EDS dan EIS. Hasil XRD menunjukkan LTO/SiC telah berhasil terbentuk sebagai produk utama. Selain itu, hasil pengujian performa EIS menunjukkan bahwa LTO/SiC 4% memiliki konduktivitas tertinggi dimana ditunjukkan dengan resistivitasnya yang paling rendah dibanding yang lain. Selain pengujian tersebut, untuk menguji performa LTO/SiC dilakukan pengujian CV dan CD.
Lithium Titanate (LTO) is one of the anode materials which possess very good electrochemical performance because of its zero-strain characteristic. In this study, Solid-state synthesis method was used to synthesize LTO using LiOH and TiO2 powder as precursors. However, LTO performance is limited by its low capacity. Addition of Silicon Carbide (SiC) was done using wet ball mill method to enhance its capacity and stability of discharge capacity. As a result, the powder has greyish color. LTO/SiC powder was characterized using X-Ray Diffraction (XRD), SEM-EDS and EIS. The result of XRD characterization exhibits the formation of LTO/SiC as a major products. Moreover, EIS performance testing showed that LTO/SiC 4% possess highes electrical conductivity which is indicated by its lowest resistivity compared to other sample. Furthermore, to find out performaces of LTO/SiC, CV and CV test was performed.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Rifqi Fadhila
Abstrak :
Baterai lithium-ion sebagai platform penyimpanan energi telah dikembangkan dalam 2 dekade terakhir dengan variasi komposisi elektroda. Baterai ini bisa dioptimalkan hingga 80% dari kemampuannya sebagai energy storage. Material anoda yang umum digunakan pada baterai lithium ion adalah grafit, memiliki struktur berlapis yang dapat memaksimalkan proses interkalasi ion lithium. Grafit berhasil disintesis dari green coke yang merupakan produk sampingan dari proses thermal cracking yang digunakan oleh perusahaan minyak bumi untuk mengubah residu bahan bakar minyak. Sintesis grafit (green coke) dilakukan dengan mencampurkan bahan green coke dengan Super P sebagai karbon konduktif, Polyivinylidine Fluoride (PVDF) sebagai pengikat (8: 1: 1), dan N-N Dimetyl Acetamid (DMAC) sebagai pelarut, kemudian digunakan sebagai lembaran anoda pada tahap pelapisan dengan cu-foil menggunakan doctor blade. Grafit (Sigma Aldrich) juga digunakan sebagai lembaran anoda sebagai pembanding. Anoda green coke dikarakterisasi menggunakan FTIR, XRD, SEM-EDS, TEM dan Raman. Kinerja elektrokimia dikarakterisasi menggunakan CV, GCD, dan EIS. Performa siklus anoda green coke dalam baterai Li-ion menghasilkan kapasitas discharge dan efisiensi coulombic masing-masing 202,59 mAh g-1 dan 79,77%. Anoda green coke menghasilkan efisiensi coulomb yang lebih rendah jika dibandingkan dengan anoda grafit (91,51%). Namun, kombinasi penggunaan limbah minyak bumi sebagai bahan baku dan kinerja elektrokimia yang baik akan membuat grafit (green coke) menjadi bahan yang menjanjikan untuk baterai dengan biaya rendah menghasilkan penyimpanan energi berskala besar.
Lithium-ion battery as an energy storage platform has been developed in the last 2 decades with variations in electrodes composition. This battery could be optimized up to 80% of its ability in storing energy. Anode material that commonly used in lithium ion battery is graphite, having a layered structure that can maximize the intercalation process of lithium ions. Graphite has been successfully synthesized from green coke which is a by-product of thermal cracking process used by petroleum companies to change fuel oil residues. Green coke graphite synthesis was carried out by mixing green coke material with Super P as conductive carbon, Polyivinylidine Fluoride (PVDF) as binder (8:1:1), and N-N Dimetyl Acetamid (DMAC) as solvent, then used as anode sheet on coating stage with copper foil using doctor blade. Commercial graphite were also used as anode sheet as comparison. The green coke anode was characterized using FTIR, XRD and SEM-EDS. Electrochemical performance was characterized using CV, GCD, and EIS. Cycling performance of green coke anode in Li-ion batteries produces reversible capacity and coulombic efficiency of 202.59 mAh g-1 and 79.77 %, respectively. Green coke anode produce lower coulombic efficiency when compared to graphite anode (91.51%). However, the combination of the use of petroleum waste as raw material and good electrochemical performance would make graphite green coke a promising material for a low cost battery for large scale energy storage.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stefanie Trixie
Abstrak :
ABSTRAK
<

Material energi terbarukan sudah banyak menarik perhatian karena banyaknya polusi yang ada pada lingkungan saat ini. Salah satu teknologi energi terbarukan adalah menghasilkan baterai yang dapat memberikan energi besar sehingga dapat menggantikan bahan bakar fosil. Baterai ion litium memiliki perpaduan antara densitas energi dan densitas daya yang tinggi, sehingga telah banyak digunakan karena kelebihannya yang menjanjikan untuk menghasilkan energi yang besar. Litium titanat adalah material yang paling sering diaplikasikan sebagai anoda pada baterai ion litium karena bersifat zero strain, umur pakai yang panjang dengan siklus yang banyak, serta aman karena cenderung tidak membentuk solid electrolyte interface. Namun, di samping kelebihan yang dimiliki baterai litium titanat, anoda ini memiliki konduktivitas listrik yang rendah dan kapasitasnya yang cukup rendah. Salah satu metode untuk meningkatkan performa baterai ion litium adalah dengan memodifikasi permukaan yaitu membentuk komposit pada anoda. Berbagai unsur dan senyawa dapat digabungkan dengan litium titanat untuk menghasilkan komposit. Pada penelitian ini, digunakan variasi kadar besi oksida sebagai bahan dalam membentuk komposit LTO/Fe2O3 untuk mengetahui pengaruh kadar besi oksida terhadap performa baterai ion litium.

 


ABSTRACT

Renewable energy materials have attracted much attention because of the large amount of pollution present in the environment today. One of the renewable energy technologies is to produce batteries that can provide large energy so that they can replace fossil fuels. The lithium ion battery has a combination of energy density and high power density, so it has been widely used because of its advantages that promise to produce large energy. Lithium titanate is the material most often applied as an anode to lithium ion batteries because it is zero strain, long service life with many cycles, and safe because it tends not to form a solid electrolyte interface. However, in addition to the advantages of lithium titanate batteries, this anode has a low electrical conductivity and a fairly low capacity. One method to improve the performance of lithium ion batteries is to modify the surface, which is to form a composite on the anode. Various elements and compounds can be combined with lithium titanate to produce composites. In this study, variations in iron oxide levels were used as an ingredient to form a composite of LTO / Fe2O3 to determine the effect of iron oxide levels on the performance of lithium ion batteries.

 

 

Universitas Indonesia,. Fakultas Teknik, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library