Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Dwi Guna Mandhasiya
"Ilmu Data adalah irisan dari matematika dan statistika, komputer, serta keahlian domain. Dalam beberapa tahun terakhir inovasi pada bidang ilmu data berkembang sangat pesat, seperti Artificial Intelligence (AI) yang telah banyak membantu kehidupan manusia. Deep Learning (DL) sebagai bagian dari AI merupakan pengembangan dari salah satu model machine learning yaitu neural network. Dengan banyaknya jumlah lapisan neural network, model deep learning mampu melakukan proses ekstrasi fitur dan klasifikasi dalam satu arsitektur. Model ini telah terbukti mengungguli teknik state-of-the-art machine learning di beberapa bidang seperti pengenalan pola, suara, citra, dan klasifikasi teks. Model deep learning telah melampaui pendekatan berbasis AI dalam berbagai tugas klasifikasi teks, termasuk analisis sentimen. Data teks dapat berasal dari berbagai sumber, seperti sumber dari media sosial. Analisis sentimen atau opinion mining merupakan salah satu studi komputasi yang menganalisis opini dan emosi yang diekspresikan pada teks. Pada penelitian ini analisis peforma machine learning dilakukan pada metode deep learning berbasis representasi data BERT dengan metode CNN dan LSTM serta metode hybrid deep learning CNN-LSTM dan LSTM-CNN. Implementasi model menggunakan data komentar youtube pada video politik dengan topik terkait Pilpres 2024, kemudian evaluasi peforma dilakukan menggunakan confusion metric berupa akurasi, presisi, dan recall.

Data Science is the intersection of mathematics and statistics, computing, and a domain of expertise. In recent years innovation in the field of data science has developed very rapidly, such as Artificial Intelligence (AI) which helped a lot in human life. Deep Learning (DL) as part of AI is the development of one of the machine learning models, namely neural network. With the large number of neural network layers, deep learning models are capable of performing feature extraction and classification processes in a single architecture. This model has proven to outperform state-of-the-art machine learning techniques in areas such as pattern recognition, speech, imagery, and text classification. Deep learning models have gone beyond AI-based approaches in a variety of text classification task, including sentiment analysis. Text data can come from various sources, such as source from social media. Sentiment analysis or opinion mining is a computational study that analyze opinions and emotions expressed in text. In this research, machine learning performance analysis is carried out on a deep learning method based on BERT data representation with the CNN and LSTM and hybrid deep learning CNN-LSTM and LSTM-CNN method. The implementation of the model uses YouTube commentary data on political videos related to the 2024 Indonesia presidential election, then performance analysis is carried out using confusion metrics in the form of accuracy, precision, and recall."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Selvi Lesmana Putri
"Makalah ini bertujuan untuk menyelidiki korelasi antara Twitter dan kinerja pasar saham dengan melihat perspektif tingkat industri untuk perusahaan tertentu yang tergabung dalam IDX30. Indeks saham ini adalah sub-kategori likuiditas dari Headline Index yang terdiri dari perusahaan-perusahaan yang digunakan sebagai referensi untuk menggambarkan situasi pasar saham yang memenuhi kriteria utama memiliki tingkat likuiditas yang tinggi. Untuk mendukung penelitian ini, kami mengumpulkan beberapa pendapat yang diperoleh dari Twitter sebagai sumber data streaming menggunakan pemrograman Python, dan Thomson Reuters untuk mendapatkan informasi harga saham, volume, dan kapitalisasi pasar masing-masing perusahaan. Model penelitian dibangun berdasarkan metode Amihud Illiquidity dan perhitungan volatilitas untuk mengukur korelasi antara analisis sentimen dan kinerja saham. Penelitian ini menunjukkan bahwa analisis sentimen terhadap pernyataan yang diunggah di Twitter memiliki korelasi yang tidak signifikan terhadap likuiditas dan volatilitas saham IDX30 di Indonesia. Namun demikian, penelitian ini belum dapat memisahkan antara tweet yang dihasilkan berdasarkan pendapat pengguna dan tweet yang dibuat berdasarkan permintaan dari pelaku pasar tertentu untuk mempengaruhi nilai saham dengan menyebarkan informasi yang bias untuk memancing reaksi publik.

This paper is aimed at investigating the correlation between Twitter and stock market performance by looking at industry-level perspective to specific companies incorporated in the IDX30. This stock index is the sub-category liquidity of the Headline Index which consists of companies that are used as a reference to describe the stock market situation that meet the main criteria of having a high level of liquidity. To support this research, we collected some opinions obtained from Twitter as a source of streaming data using Python programming, and Thomson Reuters to obtain information of stock prices, volumes, and market capitalization of each company. Research models are built based on Amihud Illiquidity method and volatility calculation to measure the correlation between sentiment analysis and stock performance. This research shows that sentiment analysis of statements uploaded on Twitter has insignificant correlation to the liquidity and volatility of IDX30 stock in Indonesia. Nevertheless, this research has not been able to separate between tweets which are generated based on user opinion and tweets which are made based on requests from certain market participants to influence the value of shares by spreading biased information to provoke a public reaction."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aries Agus Budi Hartanto
"Era perdagangan bebas membutuhkan peningkatan daya saing produk lokal di pasar global, melalui standardisasi. Kebijakan standardisasi termasuk bagaimana merencanakan, merumuskan, menetapkan, menerapkan, menegakkan, memelihara, dan mengawasi Standar Nasional, seperti Standar Nasional Indonesia (SNI). SNI bermanfaat untuk menciptakan daya saing dan perlindungan konsumen. Konsistensi standardisasi terlihat dari evaluasi kegiatan standardisasi, yang membutuhkan waktu dan sumber daya yang tinggi. Terdapat hambatan dalam kegiatan standardisasi seperti kurangnya infrastruktur standardisasi, jumlah SNI, kesiapan industri, sumber daya pengawasan, dan juga hambatan lain dalam kegiatan standardisasi. Hambatan tersebut menjadi perhatian media, melalui banyaknya pemberitaan, keluhan tentang permasalahan tersebut. Perkembangan opini pada media dapat berpengaruh terhadap pembuatan kebijakan, pelayanan dan dapat mengubah strategi kebijakan standardisasi. Oleh karena itu tujuan dari penelitian ini adalah untuk menemukan klasifikasi dan pengelompokan dari permasalahan standardisasi, yang menjadi bagian penting dari kebijakan evaluasi. Penelitian ini menggunakan pendekatan analisis sentimen, yang dapat menangkap perubahan pemberitaan media yang cepat dalam bidang standardisasi, dengan menggunakan metode klasifikasi deep belief networks (DBN) dan pengelompokan K-means. Selain DBN, penelitian ini juga membandingkan performa DBN dengan metode klasifikasi lainnya, yaitu Naive Bayes (NB), Artificial Neural Networks (ANN) dan Support Vector Machine (SVM). Hasil penelitian ini menunjukkan performa model klasifikasi dengan DBN lebih baik dari metode lainnya dengan F1 Measure mencapai 94.20%, dimana NB mencapai 89.98%, ANN mencapai 83.72% dan SVM mencapai 89.97%. Selain itu, hasilnya menunjukkan bahwa jumlah sentimen negatif terbanyak adalah 12.54% dan jumlah sentimen positif terbanyak adalah 29,94%. Kedua sentimen tersebut adalah anggota kelas pemberlakuan SNI. Adapun hasil pengelompokan K-means terbentuk 5 buah klaster optimal pada setiap kelas, dan menunjukkan subtopik dengan judul kendala pemberlakuan, penegakan, pemahaman aturan serta kebutuhan regulasi SNI menjadi perhatian terbesar dari media. Penelitian ini menghasilkan pengetahuan yang berguna untuk membangun alternatif masukan, secara cepat dalam evaluasi kebijakan standardisasi, dalam bentuk analisis sentimen yang belum pernah dilakukan sebelumnya. Penelitian ini diharapkan dapat menangkap kondisi standardisasi serta berkontribusi dalam meningkatkan kebijakan standardisasi di Indonesia.

Free trade era requires increasing the competitiveness of local products in the global market, through standardization. The standardization policy is including how to plan, formulate, establish, implement, enforce, maintain, and supervise National Standard, e.g Indonesian National Standard called SNI. SNI is useful in order to create competitiveness and consumer protection. The consistency of standardization shows through evaluation of standardization activity, that requires hight time and resources. There are obstacles in standardization activities such as lack of standardization infrastructure, number of SNIs, industry readiness, supervision resources, and also other obstacles in standardization activities. This obstacle has become the media`s attention, through many news reports and complaints about the problem. The development of opinion on the media can influence policy making, service and can change the standardization policy strategy. Therefore the purpose of this study is to find the classification and clustering of standardization problems, which to become an important part of the evaluation policy. This study uses a sentiment analysis approach, which can capture rapid changes of media coverage in standardization, using the method of deep belief networks (DBN) classification and grouping of K-means. Besides DBN, this study also compares the performance of DBN with other classification methods, namely Naive Bayes (NB), Artificial Neural Networks (ANN) and Support Vector Machine (SVM). The results of this study show the performance of the classification model with DBN is better than other methods with F1 Measure reaching 94.20%, where NB reaches 89.98%, ANN reaches 83.72% and SVM reaches 89.97%. In addition, the results showed that the highest number of negative sentiments was 12.54% and the highest number of positive sentiments was 29.94%. Both sentiments are class members of SNI regulation. The results of the K-means clustering formed 5 optimal clusters of each class, and showed subtopics about the constraints of enforcement, establishment, understanding the rules and requirements of SNI regulation to be the biggest concern of the media. This research produces knowledge that is useful for building alternative inputs, and quickly in evaluating standardization policies, in the form of sentiment analysis that has never been done before. This research is expected to capture the conditions of standardization and contribute to improving standardization policies in Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54219
UI - Tesis Membership  Universitas Indonesia Library
cover
Iqbal Hadiyan
"PT. Indosat Tbk adalah salah satu perusahaan yang berkembang pada industri telekomunikasi. Namun, PT. Indosat Tbk memiliki permasalahan mengenai customer satisfaction yang cenderung menurun dari tahun ke tahun. Data media sosial, terutama twitter, menawarkan data mengenai opini publik yang sangat padat. Namun data twitter yang masih bersifat unstructured diperlukan proses lebih lanjut untuk dapat menemukan dimensi-dimensi beserta sentimen masyarakat terhadap dimensi tersebut. Latent Dirichlet Allocation (LDA) dengan Generative Statistical modelnya memungkinkan suatu set data pengamatan dapat dijelaskan oleh kelompok yang tidak teramati. Penelitian ini menentukan 30 kelompok kata representatif dari hasil LDA. Hasilnya terdapat 18 dimensi yang paling banyak dibicarakan mengenai Indosat pada linimasa twitter. Dimensidimensi tersebut mewakili 14 dimensi yang sudah ditemukan pada penelitian-penelitian sebelumnya mengenai kepuasan pelanggan pada layanan telekomunikasi, bahkan dengan LDA mendapatkan dimensi lebih detail dan lebih real time. Masing-masing dokumen dalam dimensi tersebut diberi label sentimennya, dan ditentukan akurasinya menggunakan supervised classification, hasilnya adalah 72% akurasi dengan model Naive Bayes Classification. Mengabaikan sentimen netral, sentimen negatif Indosat masih lebih tinggi daripada sentimen positifnya, yaitu dengan 16% sentimen negatif. Persentase negatif tersebut masih didominasi dengan dimensi berkaitan dengan layanan Indosat. Sementara dominasi sentimen positif ada pada dimensi yang berhubungan dengan ketersediaan layanan untuk pengguna.

PT. Indosat Tbk is One of the companies developing in the telecommunications industry. However, PT. Indosat Tbk is very concerned about customer satisfaction which tends to decrease from year to year. Social media media, especially Twitter, offer data about public opinion that is very crowded. However, the twitter data that is still unstructured requires a further process to be able to find the dimensions and sentiments of the community towards that dimension. Latent Dirichlet Allocation (LDA) with the Generative Statistics model allows a monitoring data set to be accessed by unobserved groups. This study determines 30 groups of words that represent the results of the LDA. There are 18 dimensions that are most talked about about Indosat on the Twitter timeline. These dimensions represent the 14 dimensions found in previous studies of customer satisfaction in telecommunications services, even with LDA getting more detailed and more real-time dimensions. Each document in this dimension is labeled sentiment, and its accuracy is determined using a supervised classification, obtained 72% accuracy with the Naive Bayes Classification model. Ignoring the negative sentiment, Indosat's negative sentiment was still higher than the positive sentiment, namely with a 16% negative sentiment. The negative percentage is still a comparison with Indosat services. While the dominance of positive sentiment is in the dimensions associated with service support for users."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library