Ditemukan 4 dokumen yang sesuai dengan query
Sovian Aritonang
Abstrak :
ABSTRACT
Besi merupakan bahan dasar yang banyak dipergunakan sebagai bahan logam di dunia yang mencakup hampir sebagian besar peruntukannya adalah memenuhi kebutuhan umat manusia. Hal ini bisa terlihat antara lain dapat digunakan untuk pembuatan mobil, kapal, mesin, serta komponen struktur bangunan dan lain-lainnya, akan tetapi apabila dilihat dari segi pembiayaan untuk pembuatannya tersebut sangatlah murah namun mempunyai kekuatan yang sangat kuat. Tapi besi jenis ini masih dianggap sangat lemah serta lunak apabila dipakai sebagai bahan dasar pembuatan baja, sehingga perlu adanya proses pencampuran dengan bahan-bahan unsur paduan yang ada yang akan mengubah semuanya, dari awalnya sebuah besi murni yang bersifat lunak maka akan menjadikanya semakin lebih kuat. Alloy atau panca logam ini merupakan unsur yang tergabung dalam bentuk senyawa cair atau pejal yang sama serta berasal dari dua atau lebih unsur, yang mana salah satu dari unsur tersebut merupakan bahan dasar yang berasal dari logam, dan alloy atau panca logam ini memiliki sifat julat lebur yang merupakan bahan campuran dari pepejal serta cair. Untuk membuat alloy biasanya dibuat berdasarkan fungsi dan kegunaannya yang disesuaikan dengan pemakaiannya alloy itu dibuat. Dalam penelitian ini tujuan alloy dibuat yaitu untuk digunakan untuk lapisan sistem kekerasan perlindungan kendaraan lapis baja. Material untuk alloy yang digunakan sebagai sistem perlindungan kendaraan lapis baja yaitu untuk kekerasan bisa menambahkan unsur karbon, yang terdapat dari batubara, dan boron akan meningkatkan nilai konduktivitas untuk meredam energi apabila terjadi bentuaran pada plat baja kendara lapis baja. Selain pencampuran unsur boron Besi baja paduan merupakan baja yang banyak mengandung unsur-unsur yang ada selain Besi (Fe) dan Carbon (C), campuran besi ini biasanya mengandung unsur-unsur yang lain seperti Nikel (Ni), Chrom (Cr), Mohliben (Mo), Titanium (Ti), Mangan (Mn) dan lain sebagainya. Sedangkan tujuan adanya penambahan pada unsur-unsur tersebut adalah untuk dapat meningkatkan kekauatan dan mengubah sifat dengan tujuan dapat menambah kekuatan pada kendaraan lapis baja.
Bogor: Universitas Pertahanan Indonesia, 2019
345 JPBN 9:2 (2019)
Artikel Jurnal Universitas Indonesia Library
Mohammad Dani
Abstrak :
The 56Fe16.6Cr25Ni0.9Si0.5Mn austenitic superalloy has been produced in an induction furnace; it was made from granular ferro-scrap, ferrochrome, ferrosilicon, and ferromanganese materials. Originally, this alloy had been proposed for use in high mechanical loads and high temperature conditions (such as in nuclear and fossil fuel power plant facilities). Tensile strength tests showed that the alloy has an average yield strength of about 430.56 MPa, which is higher than Incoloy A-286 (a commercially available alloy). A combination of microscopy techniques by means of an optical microscope, X-ray diffraction [XRD], scanning electron microscopy [SEM], and transmission electron microscopy [TEM] techniques were applied in order to get detailed information about the fine structure of the alloy. XRD confirmed that the alloy matrix exhibits an FCC crystal structure with a lattice parameter of about 3.60 Å and grain sizes ranging from 50 to 100 µm. The results of the TEM analysis revealed the new type of precipitations that formed at the grain boundaries. These needle-like precipitations, probably Fe/Cr-rich precipitations of the (Fe,Cr)xCy type, acted as the source of intergranular corrosion (IGC). Small coherent plate-like and much smaller granular precipitations were found distributed homogenously along grain boundaries and inside the grains. Combining the tensile strength test and microstructure analysis suggested that these precipitations play significant roles in the hardness of the investigated sample.
Depok: Faculty of Engineering, Universitas Indonesia, 2018
UI-IJTECH 9:1 (2018)
Artikel Jurnal Universitas Indonesia Library
Taufiqullah
Abstrak :
Pada pengelasan baja, fenomena cold cracking atau retak dingin merupakan problem yang sangat signifikan. Fenomena ini sering terjadi setelah proses pengelasan selesai. Retak ini bisa terjadi pada daerah heat affected zone (HAZ) maupun pada logam las. Secara umum, cold cracking dapat diketahui dan dinyatakan sebagai hadirnya hidrogen dan tegangan pada struktur mikro yang sensitif terhadap retak pada kondisi temperatur di bawah 150oC. Proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi (high strength steel) dalam pembuatan komponen memiliki resiko yang cukup tinggi terhadap terjadinya fenomena cold cracking. Hal ini disebabkan adanya dua parameter yang saling mendukung yaitu pelat tebal dan baja paduan rendah untuk kemungkinan terbentuknya struktur mikro yang sensitif terhadap retak. Baja paduan rendah kekuatan tinggi memiliki sensitivitas terhadap retak relatif tinggi karena memiliki nilai karbon ekuivalen (CE) yang tinggi. Sedangkan pelat tebal, laju pendinginan pengelasan menjadi lebih cepat karena daya serap panas lebih besar jika dibanding dengan pelat tipis. Pengontrolan laju pendinginan menjadi faktor utama pada proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi untuk mendapatkan hasil lasan yang bebas dari cold cracking.
Dalam penelitian ini dilakukan pengontrolan laju pendinginan pada proses pengelasan baja HSLA dengan tebal 40mm dengan menggunakan media pendinginan udara, blanket dan heater electric. Proses pengelasan yang digunakan Gas Metal Arc Welding (GMAW) dengan parameter pengelasan mengikuti parameter yang tercantum pada standar.
Dari hasil penelitian menunjukkan bahwa cold cracking dapat dihindari dengan mengontrol waktu pendinginan pada temperatur rendah (T300- T100) agar lebih besar dari waktu pendinginan kritisnya. Penggunaan media pendinginan berupa electric heater dapat mencegah terjadinya cold cracking pada daerah HAZ lasan HSLA. Retak dapat terjadi karena adanya konsentrasi tegangan, variasi lokal kekerasan dan struktur mikro serta adanya patahan getas pada permukaan retak.
Cold cracking phenomenon is a very significant problem on steel weld. This phenomenon usually occurs after welding process finished. Crack often occurr on heat affected zone area. Generally, cold cracking is caused due to hydrogen diffuse during welding process and stress on micro structure which is susceptible to the crack at low temperature (under 150oC). Welding process on thick plate high strength low alloy steel has high risk to cold craacking phenomenon. The cooling rate of thick plate during welding will increase the absorbtion of heat compare to thin plate. On the other hand, high strength low alloy steel is susceptible to the crack due to high carbon equivalent (CE). Controlling cooling rate is the main factor on thick plate HSLA welding process in order to prevent cold cracking phenomenon.
This research will be done by controllong cooling rate on welding process of HSLA steel which have thickness of 40mm and using cooling media such as air, blancket and electric heater. Welding process is carried out by using Gas Metal Arc Welding (GMAW) with welding parameter as stated on the WPS.
The result showed that prevention of cold cracking can be done by controlling cooling time at low temperature (T300 - T100) in order to keep cooling time larger than critical cooling time. The use of cooling media with electric heater can prevent the cold cracking at the HAZ of HSLA weldment. Crack can be found on the weldment due to the present of stress concentration, local variation of hardness and micro structure and present of brittle fracture on the crack surface.
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26790
UI - Tesis Open Universitas Indonesia Library
Taufiqullah
Abstrak :
ABSTRAK
Pada pengelasan baja, fenomena cold cracking atau retak dingin merupakan problem yang sangat signifikan. Fenomena ini sering terjadi setelah proses pengelasan selesai. Retak ini bisa terjadi pada daerah heat affected zone (HAZ) maupun pada logam las. Secara umum, cold cracking dapat diketahui dan dinyatakan sebagai hadirnya hidrogen dan tegangan pada struktur mikro yang sensitif terhadap retak pada kondisi temperatur di bawah 150oC. Proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi (high strength steel) dalam pembuatan komponen memiliki resiko yang cukup tinggi terhadap terjadinya fenomena cold cracking. Hal ini disebabkan adanya dua parameter yang saling mendukung yaitu pelat tebal dan baja paduan rendah untuk kemungkinan terbentuknya struktur mikro yang sensitif terhadap retak.
Baja paduan rendah kekuatan tinggi memiliki sensitivitas terhadap retak relatif tinggi karena memiliki nilai karbon ekuivalen (CE) yang tinggi. Sedangkan pelat tebal, laju pendinginan pengelasan menjadi lebih cepat karena daya serap panas lebih besar jika dibanding dengan pelat tipis. Pengontrolan laju pendinginan menjadi faktor utama pada proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi untuk mendapatkan hasil lasan yang bebas dari cold cracking. Dalam penelitian ini dilakukan pengontrolan laju pendinginan pada proses pengelasan baja HSLA dengan tebal 40mm dengan menggunakan media pendinginan udara, blanket dan heater electric. Proses pengelasan yang digunakan Gas Metal Arc Welding (GMAW) dengan parameter pengelasan mengikuti parameter yang tercantum pada standar.
Dari hasil penelitian menunjukkan bahwa cold cracking dapat dihindari dengan mengontrol waktu pendinginan pada temperatur rendah (T300- T100) agar lebih besar dari waktu pendinginan kritisnya. Penggunaan media pendinginan berupa electric heater dapat mencegah terjadinya cold cracking pada daerah HAZ lasan HSLA. Retak dapat terjadi karena adanya konsentrasi tegangan, variasi lokal kekerasan dan struktur mikro serta adanya patahan getas pada permukaan retak.
ABSTRACT
Cold cracking phenomenon is a very significant problem on steel weld. This phenomenon usually occurs after welding process finished. Crack often occurr on heat affected zone area. Generally, cold cracking is caused due to hydrogen diffuse during welding process and stress on micro structure which is susceptible to the crack at low temperature (under 150oC). Welding process on thick plate high strength low alloy steel has high risk to cold craacking phenomenon.
The cooling rate of thick plate during welding will increase the absorbtion of heat compare to thin plate. On the other hand, high strength low alloy steel is susceptible to the crack due to high carbon equivalent (CE). Controlling cooling rate is the main factor on thick plate HSLA welding process in order to prevent cold cracking phenomenon. This research will be done by controllong cooling rate on welding process of HSLA steel which have thickness of 40mm and using cooling media such as air, blancket and electric heater. Welding process is carried out by using Gas Metal Arc Welding (GMAW) with welding parameter as stated on the WPS.
The result showed that prevention of cold cracking can be done by controlling cooling time at low temperature (T300 - T100) in order to keep cooling time larger than critical cooling time. The use of cooling media with electric heater can prevent the cold cracking at the HAZ of HSLA weldment. Crack can be found on the weldment due to the present of stress concentration, local variation of hardness and micro structure and present of brittle fracture on the crack surface.
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26011
UI - Tesis Open Universitas Indonesia Library