Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Dita Tessa Parastika
"Kebutuhan untuk melihat bagian dalam obyek secara non-invasive maupun non-intrusive merupakan kebutuhan yang sangat mendasar bukan hanya di dunia kedokteran tetapi juga di dalam proses industri, geologi, sistem keamanan, dan lain-lain. Di dunia kedokteran, teknologi ?melihat tembus? ini digunakan untuk keperluan diagnosa dini atau mengambil keputusan sebelum operasi. Beberapa teknologi yang telah dikembangakan antara lain CT scan, MRI, PET, dan SPECT masih memiliki dimensi yang cukup besar, tidak portable dan biaya pembuatan serta pemeliharaan yang mahal. Teknologi baru yang sekarang ini sedang berkembang seperti pencitraan gelombang mikro (microwave imaging) menawarkan beberapa kelebihan seperti biaya yang murah, portable dan bersifat non-invasive maupun non-intrusive. Oleh karena lamanya proses pengambilan data ketika proses pemindaian (scanning), maka diperlukan sistem akuisisi data yang dapat mengambil data pemindaian secara otomatis.
Dalam skripsi ini, dirancang sebuah sistem akuisisi data otomatis untuk pencitraan gelombang mikro yang berbasis algoritma Algebraic Reconstruction Technique. Sistem yang dirancang berupa integrasi perangkat lunak berbasis LabVEW dan perangkat keras berupa perangkat penggerak motor stepper dan mikrokontroler Arduino yang diprogram sebagai pengendali sistem. Pengujian sistem akuisisi data dilakukan dengan menempatkan sebuah phantom uji homogen di antara dua buah antena dipol yang berfungsi sebagai transmitter dan receiver pada frekuensi 3 GHz. Selanjutnya sepasang antena dipol tersebut akan melakukan dua mekanisme untuk mendapatkan proyeksi citra, yakni gerak translasi sejauh 200 mm dan gerak rotasi dengan sudut tempuh 180 derajat. Sebagai acuan, dilakukan simulasi dengan konfigurasi yang sama menggunakan CST Microwave Studio.
Berdasarkan hasil pengujian sistem akuisisi data, diperoleh hasil bahwasannya sistem memiliki tingkat akurasi (step minimum) translasi dan rotasi sebesar 0,5 mm dan 0,5 derajat saat proses pemindaian objek. Hasil pembacaan dataakuisisi normalisasi yang diperoleh memiliki kesalahan rata-rata kurang dari 5% dibandingkan dengan hasil simulasi.

Necesarity to see the inside of the object on non-inavasively and non-intrusively is the fundamental requirement not only in medical fields but also in industrial processes, geological, security systems, and others fields. In the medical world, the "see through" technology is used for early diagnosis or take a decision before the operation. Some developed technologies such as CT scan, MRI, PET and SPECT are considerably still bulky, non-portable and relatively high production and maintenance cost. A new growing technology called microwave imaging offers some other advantages especially low cost, portable, which still maintain on non-invasively and non-intrusively technique. Due to the imaging system that uses back projection method takes relatively long scanning process, hence, data retrieval process is required to be performed by an automatically data acquisition system.
In this bachelor thesis, an automatic data acquisition system is designed for microwave imaging purpose by using Algebraic Reconstruction Techique algorithm. The acquisition system is developed as the integration of software LabVIEW-based and motor stepper hardware driver and programable microcontroller Arduino-based as the system controller. In order to validate the data acquisition system, a homogeneous phantom is placed between two dipole antennas (as a transmitter and receiver) at frequency of 3 GHz. Futhermore, the antennas will perform two mechanism to obtain the image projections, ie 200 mm translational motion and 180 degrees rotational motion. As the reference, the simulation with same configuration is design in CST Microwave Studio.
According to the testing results from the proposed data acquisition system, the system has an accuracy rate (minimum step) by 0.5 mm and 0.5 degree of the translation and rotation when it scans the object. In addition, an average error of the retrieved data from the acquisition system is less than 5% compared with the simulation results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64698
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifqi Ramadhan
"ABSTRACT
Korban kanker dan tumor akut semakin bertambah tiap tahunnya dan menjadi salah satu penyebab kematian manusia terbanyak di dunia. Kanker dan tumor merupakan sel jaringan tubuh yang tumbuh secara abnormal dan merusak jaringan disekitarnya. Pada awalnya kanker dan tumor tidak memiliki gejala yang pasti pada stadium awal, dan bahkan dapat menyerang jaringan tubuh bagian dalam yang menyebabkan tidak bisa dilihat dengan mata manusia. Penyebab umum dari penderita kanker dan tumor akut adalah telatnya pendeteksian dini. Pendeteksian dini yang murah, proses yang cepat, sistem yang sederhana, dan alat yang portable menjadi salah satu solusi yang tepat untuk mengantisipasi perkembangan kanker ataupun tumor yang lebih jauh. Dari semua metode yang memiliki sistem perangkat keras yang murah, sederhana, dan portable yaitu metode microwave imaging. Algoritma yang paling sederhana dalam microwave imaging adalah Filtered Back Projection (FBP) dan Algebraic Reconstruction Technique (ART). Kedua metode tersebut akan dibandingkan dengan cara merekonstruksi citra phantom fisik buatan yang memiliki dua karakteristik dielektrik yang berbeda. Metode perbandingan kinerja yang dipakai terbagi menjadi dua, yaitu analisis kualitatif dan kuantitatif. Analisis perbandingan secara kualitatif meliputi kasar atau halusnya citra dan keberhasilan membedakan dielektrik secara kasat mata. Sedangkan metode kuantitatif meliputi metode Histogram, Structural Similarity, Mean Squared Error, dan Peak Signal-to-Noise Ratio. Setelah dibandingkan keduanya berhasil membedakan kedua dielektrik tetapi FBP memiliki nilai parameter analisis kuantitatif yang lebih baik dibandingkan ART. Di sisi lain ART menghasilkan citra yang lebih kontras dengan persebaran grayscale level yang lebih lebar dibandingkan FBP dan memperjelas citra yang dihasilkan.

ABSTRACT
Victims of acute cancer and tumor are growing each year and just become one of the causes of human deaths in the world. Cancer and the tumor tissue cells are actually normal cells that grew abnormally and turn to take over and damage the surrounding tissue. At the beginning, cancer and tumors do not have definite symptoms in its early stages, and can even attack the tissues inside of the body that can not be seen with the human eye. Early detection system which is cheap, quick, simple, and portable is appropriate to anticipate the further development of cancer or tumor. Among all the methods that have a cheap, simple, and portable hardware system is microwave imaging methods. The two simplest algorithm in the microwave imaging are Filtered Back Projection (FBP) and Algebraic Reconstruction Technique (ART). Both of these methods will be compared by reconstructing the image of an artificial physical phantom that has two different dielectric value. Performance comparison method that has been used is divided into two method, namely qualitative and quantitative method. Qualitative comparative analysis covers the smoothness of an image and also the success in distinguishing dielectric value differences by looking the image with normal human eye. While quantitative method includes Histogram, Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR). Having compared, their image results managed to distinguish the two dielectric, but in quantitative method FBP results are better than ART. On the qualitative method, ART produces more contrast image with wider distribution grayscale level than FBP, which is make the ART result image more distinguishable for each dielectric value."
2016
S63227
UI - Skripsi Membership  Universitas Indonesia Library
cover
Djoko Rubyanto
"ABSTRAK
Singular Value Decomposition (SVD), Algebraic Reconstruction Technique (ART), Simultaneous Iterative Reconstruction Technique (SIRT) dan Conjugate Gradient (CG) merupakan metode-metode inversi tomografi yang populer. Pada tesis ini dilakukan studi banding terhadap keempat metode tersebut yang diterapkan untuk seismik refleksi. inversi tomografi refleksi menitikberatkan analisis pada hubungan antara gelombang-gelombang terpantul, kedalaman bidang pantul serta cepat rambat gelombang pada medium yang dilaluinya. Studi dilakukan menggunakan data sintetis (pemodelan) dengan fokus analisis : deviasi hasil inversi terhadap model, kecepatan konvergensi, kestabilan solusi terhadap noise, kualitas citra hash inversi dan kemampuan musing-masing metode diadaptasi untuk matriks longgar (sparse) berdimensi besar.
Keluaran inversi tomografi dari masing-masing metode masih terlalu kasar sehingga dilakukan penghalusan (smoothing) menggunakan filter median dengan panjang jendela data 5 titik. Hasil studi banding menunjukkan SIRT adalah metode yang paling balk dibanding SVD, ART atau CG.

ABSTRACT
Singular Value Decomposition (SVD). Algebraic Reconstruction Technique (ART), Simultaneous Iterative Reconstruction Technique (SIRT) and Conjugate Gradient (CG) are the popular methods for tomographic inversion. This thesis compares the above methods for seismic reflection case model. Reflection tomography stresses its analysis to the relationship between the reflected waves, depth of reflectors and the velocities of the medium. Comparative study using synthetic data (modeling) has been focussed for analysing the deviation of the inversion results to the model, speed of convergence, stability of solution to noise, image quality and flexibility of the extension of the method to sparse matrix.
For a better result, output of the inversion methods must be smoothed by using 5 points median filler. The comparative study shows that SIRT is the best method among SVD, ART and CG.
"
Depok: Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhani Elevani
"Kanker merupakan salah satu penyebab kematian utama di dunia. Deteksi dini memungkinkan dilakukannya penanganan yang lebih baik, diantaranya menggunakan teknologi Computed Tomography (CT) dan Magnetic Resonance Imaging (MRI). Akan tetapi, teknologi tersebut masih memiliki permasalahan terkait biaya, ukuran, serta kompleksitas peralatan. Salah satu modalitas alternatif pencitraan obyek untuk diagnosa medis adalah gelombang mikro yang relatif aman, murah, mudah dalam penggunaan, serta portable.
Dalam tesis ini dilakukan rancang bangun sistem pencitraan gelombang mikro sebagai alternatif bagi teknologi deteksi dini kanker yang telah ada. Sistem terdiri atas sepasang antena dipol dengan frekuensi kerja 3 GHz sebagai antena pengirim dan antena penerima. Pemindaian obyek dirancang dengan dua konfigurasi. Pertama, hanya antena penerima yang bergerak secara translasi sementara gerak rotasi dilakukan oleh pasangan antena. Ke-2, pasangan antena bergerak secara translasi maupun rotasi. Proses selanjutnya adalah rekonstruksi citra dengan algoritma Algebraic Reconstruction Technique (ART). Validasi kinerja sistem pencitraan dilakukan dengan pengujian terhadap 3 jenis phantom. Pertama, phantom matriks berupa Shepp-Logan phantom berukuran 270x270 piksel. Phantom ke-2 dan ke-3 berupa silinder dua lapis dengan diameter dalam sebesar 6 cm yang merepresentasikan jaringan tumor dan diameter lapisan luar sebesar 14 cm yang merepresentasikan jaringan otak. Phantom ke-2 merupakan phantom numerik yang dirancang menggunakan perangkat lunak CST Microwave Studio dengan permitivitas relatif lapisan dalam sebesar 78 dan lapisan luar sebesar 52. Phantom ke-3 merupakan phantom fisik semisolid dengan permitivitas relatif lapisan dalam sebesar 78.63 dan lapisan luar sebesar 51.72. Proyeksi irisan melintang berupa sinogram pada phantom matriks dan matriks parameter S21 hasil pemindaian pada phantom numerik dan phantom fisik, menjadi input bagi sistem rekonstruksi citra.
Analisis terhadap citra hasil rekonstruksi dilakukan secara kualitatif meliputi tampilan citra hasil rekonstruksi secara visual dan histogram tingkat keabuan citra, serta secara kuantitatif meliputi parameter faktor koreksi, Mean-Squared Error (MSE), dan Structural Similarity Index (SSIM). Tampilan visual citra hasil rekonstruksi ketiga phantom tersebut menunjukkan bentuk dan pola yang serupa citra asli, dengan tingkat keabuan citra yang semakin homogen seiring bertambahnya iterasi. Histogram citra rekonstruksi menunjukkan kelompok tingkat keabuan dominan sesuai jenis jaringan dalam phantom. Pada phantom numerik dan phantom fisik hasil rekonstruksi dari pemindaian dengan konfigurasi pertama menunjukkan bentuk obyek yang serupa citra asli, dengan batas antara lapisan dalam dan lapisan luar tampak samar akibat penggunaan antena dipol yang memiliki pola radiasi omnidireksional. Hasil rekonstruksi dari pemindaian dengan konfigurasi ke-2 menunjukkan batas lebih jelas antara lapisan dalam dan lapisan luar akibat perubahan nilai parameter S21 yang lebih drastis pada perbatasan kedua lapisan phantom. Secara kuantitatif, faktor koreksi semakin kecil dengan bertambahnya iterasi dan mendekati nol pada iterasi ke-100.
Nilai Mean-Squared Error pada phantom matriks masih cukup besar akibat proses pembobotan, sementara nilai Structural Similarity Index pada ketiga phantom masih jauh lebih kecil dari 1, akibat proses pembobotan pada phantom matriks dan asumsi citra referensi untuk phantom numerik dan phantom fisik. Secara umum, sistem pencitraan gelombang mikro telah berhasil diuji validitasnya secara kualitatif dengan tampilan visual citra rekonstruksi yang serupa dengan citra asli.

Cancer is one of the leading cause of death worldwide, and an early detected cancer is likely to get better treatment. Widely used modalities for scanning the presence of cancer such as Computed Tomography and Magnetic Resonance Imaging still have problems related to the cost, size and equipment complexity. Microwave imaging is considered as an alternative modality due to its low health risk, low cost, ease of use, and portability.
In this thesis, a microwave imaging system is developed as an alternative for early cancer detection technologies that already exist. The system consists of a pair of dipole antenna with the operating frequency of 3 GHz as the transmitting antenna and the receiving antenna. Object scanning is designed with two configurations, first, only the receiver antenna moved translationally and both transmitter and receiver antennas moved rotationally. Second, both antennas moved translationally and rotationally. The next process is the image reconstruction using Algebraic Reconstruction Technique (ART) algorithm. The performance of the imaging system is validated using three types of phantom. First, the matrix phantom in the form of a 270x270 pixels Shepp-Logan phantom. The second and the third phantoms are two layered cylindrical phantom with an inner diameter of 6 cm representing tumorous tissue and the outer layer diameter is 14 cm representing brain tissue. The second phantom is a numerical phantom designed using CST Microwave Studio with relative permittivity of the inner layer and the outer layer is 78 and 52, respectively. The third phantom is a semisolid physical phantom with relative permittivity of the inner layer is 78.63 and the outer layer is 51.72. The projection of the cross-sectional view in the form of sinogram of the matrix phantom, and the matrices of S21 parameter phantom obtained from object scanning results of numerical and physical phantom, become the input to the image reconstruction system.
The qualitative results are analyzed from the visual display and grayscale histogram of the reconstructed images, while the quantitative results are analyzed from the values of iteration correction factor, Mean-Squared Error (MSE), and Structural Similarity Index (SSIM). The visual display of reconstructed images show similar shape and pattern with the original images. The homogeneity of the graylevels increase with increasing iterations. The histograms show dominant gray levels representing types of tissue in the phantoms. In numerical and physical phantoms, reconstructed images from object scanning using the first configuration show similar shapes with the original ones, with blurred display at the boundary between the outer layer and the inner layer. It is caused by omnidirectional radiation pattern of dipole antenna. Results obtained from the second configuration show clearer boundary due to drastical change of S21 parameter value measured at the boundary area. Quantitatively, iterative correction factor is getting smaller with increasing iterations and approaching zero in the 100th iteration.
Mean-Squared Error value of the matrix phantom is still quite large due to weighting process while the Structural Similarity Index value of the three phantoms are still much smaller than 1 due to weighting process of the matrix phantom and reference image assumptions of the numerical phantom and the physical phantom. In general, the validity of the microwave imaging system has been successfully tested qualitatively by the visual display similarity of the reconstructed image to the original image."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T46080
UI - Tesis Membership  Universitas Indonesia Library
cover
Ria Aprilliyani
"Sel tubuh manusia mengalami pertumbuhan, pembelahan, dan pergantian setiap menitnya secara normal. Pola hidup yang tidak baik terkadang menyebabkan sel mengalami pertumbuhan, pembelahan yang lebih cepat dibandingkan dengan pergantiannya. Pendeteksian dini sangat dianjurkan untuk mengetahui kondisi tubuh secara berkala. Kebutuhan dalam melihat obyek secara non-invasive tanpa merusak dan non-intrusive tanpa memasukkan alat mendorong berkembangnya teknologi tomografi di bidang kedokteran. Pemanfaatan Microwave Imaging dalam bidang medik sebagai teknologi tomografi mengalami peningkatan, karena kelebihan yang dimiliki dibandingkan dengan teknologi tomografi lainnya yaitu resiko kesehatan kecil, biaya yang murah dalam implementasi dan operasinya, dan mudah untuk digunakan. Perbedaan parameter dielektrik pada jaringan normal dan tidak normal dimanfaatkan dalam pendeteksian. Transmitter akan mengalirkan gelombang mikro melalui obyek yang akan diamati dan diterima oleh receiver. Informasi yang dihasilkan dari receiver akan direkonstruksi menggunakan algoritma untuk mencitrakan obyek bagian dalam. Dalam skripsi ini akan dibuat program algoritma Simultaneous Algebraic Reconstruction Technique SART serta menganalisisnya secara kualitatif dan kuantitatif. Selain itu, akan dibandingkan dengan algoritma Filtered Back Projection FBP dan Algebraic Reconstruction Technique ART untuk melihat hasil citra SART secara keseluruhan. Program SART telah berhasil dibuat dan analisis menunjukkan bahwa hasil rekonstruksi citra SART memiliki hasil citra yang paling baik secara kualitatif dan kuantitatif dibandingkan dengan algoritma ART dan FBP. Sedangkan waktu yang dibutuhkan dalam satu kali iterasi adalah 1 menit 50 detik.

Human cells grow, divide and replace into new cells every minute normally. Sometimes Improper lifestyle causes cell growth and divide faster than cell replacement. Early detection is recommended to know the condition of the body regularly. The challenge for non invasive and non intrusive object encourage the development of tomographic technology in the field of medicine. Utilization of Microwave Imaging in the medical field as a tomography technology has increased, because of its advantages compared to other tomography technologies that are low health risk, low cost in implementation and operation, and easy to use. The differences of dielectric parameters in normal and abnormal tissue are utilized in detection. Transmitter will transmit microwaves through the object to be observed and received by the receiver. The information generated from the receiver will be reconstructed using an algorithm to image the inner object. In this thesis will be created algorithm program Simultaneous Algebraic Reconstruction Technique SART and analyze it qualitatively and quantitatively. In addition, it will be compared with Filtered Back Projection FBP algorithms and Algebraic Reconstruction Technique ART to see overall SART image results. The SART program has been successfully created and analysis shows that the results of SART image reconstruction have the best image results qualitatively and quantitatively compared to the ART and FBP algorithms. While the time required in one time iteration is 1 minute 50 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69597
UI - Skripsi Membership  Universitas Indonesia Library