Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Muhammad Razaan Azra Gunawan
"Dalam konteks estimasi usia gigisebagai metode non-invasif untuk determinasi usia kronologis pasien, teknik orthopantomography (OPG) telah luas diaplikasikan meski menghadapi kendala seperti biaya tinggi dan eksposur radiasi. Merespons limitasi pendekatan konvensional, paradigma machine learning dan deep learning kini dioptimalkan untuk mengidentifikasi pola intrinsik pada data pencitraan medis kompleks. Penelitian ini bertujuan mengembangkan algoritma YOLOv8 untuk meningkatkan akurasi estimasi usia gigi, menggunakan dataset dari RSGMP Universitas Airlangga dengan subjek pediatrik 5—15 tahun. Dataset dimodifikasi menjadi tiga variasi: tanpa augmentasi, augmentasi tiga kali per sampel, dan augmentasi lima kali per sampel. Hasil optimal dicapai oleh variasi ketiga dengan augmentasi lima kali per sampel, mendemonstrasikan akurasi 60% dan F1-Score 61,05%, mengindikasikan potensi signifikan teknik augmentasi data dalam meningkatkan kinerja algoritma deep learning untuk estimasi usia gigi.

In the context of dental age estimation as a non-invasive method for determining patients' chronological age, orthopantomography (OPG) techniques have been widely applied despite facing challenges such as high costs and radiation exposure. Responding to the limitations of conventional approaches, machine learning and deep learning paradigms are now being optimized to identify intrinsic patterns in complex medical imaging data. This research aims to develop the YOLOv8 algorithm to improve the accuracy of dental age estimation, using a dataset from the Dental and Oral Hospital of Airlangga University with pediatric subjects aged 5-15 years. The dataset was modified into three variations: without augmentation, triplet augmentation, and quintuplet augmentation per sample. Optimal results were achieved by the third variation with quintuplet augmentation, demonstrating 60% accuracy and 61.05% F1-Score, indicating significant potential for data augmentation techniques in enhancing the performance of deep learning algorithms for dental age estimation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karenina Kamila
"Sektor perikanan Indonesia merupakan salah satu sektor penting bagi kemajuan perekonomian Indonesia dikarenakan Indonesia yang memiliki luas laut yang sangat besar dan SDA ikan yang berlimpah. Namun, sampai saat ini perdagangan ikan ilegal masih sering terjadi di kalangan nelayan yang biasanya dilakukan di atas kapal walaupun sudah ada petugas pengawas. Untuk mengatasi masalah ini perlu adanya sistem pengawasan dengan menggunakan kamera CCTV dan artificial intelligence di atas kapal dengan harapan dapat mengurangi resiko kecurangan petugas setempat dan meningkatkan efektivitas pengawasan penangkapan ikan. Penelitian ini berfokus untuk mencari model dengan menyesuaikan beberapa hyperparameter untuk mendapatkan hasil yang terbaik dengan menggunakan algoritma YOLOv6 untuk object detection dan YOLOv8 untuk segmentation. Penelitian ini mendapatkan model terbaik untuk object detection menggunakan YOLOv6 dengan nilai mAP @0,5 sebesar 0,833, mAP @0,5-0,95 sebesar 0,63, F1-score sebesar 0,861 dan FPS 92 dan segmentation menggunakan YOLOv8 menghasilkan nilai mAP mask @0,5 sebesar 0,804, mAP mask @0,5-0,95 sebesar 0,426, mAP box @0,5 sebesar 0,843, dan mAP box @0,5-0,95 sebesar 0,561. Kedua versi YOLO tersebut dapat mengklasifikasi jenis ikan yang ditangkap oleh nelayan dengan harapan dapat mempermudah proses pencatatan dan penyimpanan data hasil penangkapan ikan.

The Indonesian fisheries sector is one of the important sectors for the progress of the Indonesian economy because Indonesia has a very large sea area and abundant fish resources. However, until now illegal fish trade is still common among fishermen, which is usually carried out on boats even though there are supervisors. To overcome this problem, it is necessary to have a surveillance system using CCTV cameras and artificial intelligence on board so that it will reduce the risk of fraud by local officers and increase the effectiveness of fishing supervision. This research focuses on finding a model by adjusting several hyperparameters to get the best results using the YOLOv6 algorithm for object detection and YOLOv8 for segmentation. This study found the best model for object detection using YOLOv6 with a mAP @0.5 value of 0.833, mAP @0.5-0.95 of 0.63, F1-score of 0.861 and FPS 92 and segmentation using YOLOv8 produces a mAP mask value @0.5 is 0.804, mAP mask @0.5-0.95 is 0.426, mAP box @0.5 is 0.843, and mAP box @0.5-0.95 is 0.561. The two YOLO versions can classify the types of fish caught by fishermen in the hope of facilitating the process of recording and storing data on fishing results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Ramadhan
"Jumlah kendaraan yang digunakan manusia dalam bertransportasi di dunia semakin meningkat baik kendaraan roda empat maupun kendaraan roda dua, tidak terkecuali di Indonesia. Ini membuat semakin sulitnya pengidentifikasian pelanggaran lalu lintas yang dilakukan pengendara. Pendeteksi plat nomor otomatis merupakan suatu sistem teknologi yang memiliki kemampuan untuk mendeteksi, mengenali, dan menyimpan plat nomor kendaraan melalui kamera, pemroresan citra, dan kecerdasan buatan. Di dalam penelitian ini akan dikembangkan metode pendeteksi plat nomor menggunakan YOLOv8 dan MobileNetV2 pada framework Mediapipe yang ditanam pada sistem Android pada gawai. Plat nomor yang telah terdeteksi kamera gawai dikenali karakternya menggunakan Optical Character Reader (OCR) kemudian disalin dan dimasukkan ke situs SAMSAT setempat untuk diidentifikasi. Informasi yang tersaji pada situs SAMSAT dapat digunakan sebagai informasi untuk memvalidasi keabsahan kendaraan oleh pihak yang berwenang. Waktu inferensi yang diperlukan untuk mengidentifikasi plat nomor mencapai 350 ms detik pada gawai dengan spesifikasi Snapdragon 695 dan RAM 11 GB. Akurasi model deteksi plat kendaraan diuji dengan split test dataset yang menghasilkan akurasi sebesar 96%. Selain itu, model juga diuji dengan pengujian keandalan dengan melakukan simulasi aplikasi pada beberapa variasi kondisi seperti jenis plat, waktu pengujian, dan jarak yang menghasilkan akurasi rata-rata 81%. Implementasi sistem ini pada perangkat Android memberikan manfaat gawai yang lebih besar bagi pihak yang berkepentingan. Untuk memastikan implementasinya secara realtime, sistem harus efisien, kompleksitas komputasi yang rendah, dan skalabilitas yang tinggi.

The number of vehicles used for transportation in the world is increasing, both fourwheeled vehicles and two-wheeled vehicles, including in Indonesia. This makes it increasingly difficult to identify traffic violations committed by drivers. Automatic number plate detection is a technology that has the ability to detect, recognize and store vehicle number plates through cameras, image processing and artificial intelligence. In this research, a number plate detection method will be developed using YOLOv8 and Mediapipe which are embedded in the Android system on the device. The character of the number plate that has been detected by the device camera is identified using an Optical Character Reader (OCR), then copied and entered into the local SAMSAT site for identification. The information presented on the SAMSAT website can be used as information to validate the data of the vehicle by the authorized parties. The inference time required to identify number plates reaches 350 ms seconds on a device with Snapdragon 695 specifications and 11 GB RAM. The accuracy of the vehicle plate detection model was tested using a split test dataset which resulted in an accuracy of 96%. Apart from that, the model was also tested using reliability testing by simulating the application under several variations of conditions such as plate type, testing time and distance which resulted in an average accuracy of 81%.Implementation of this system on Android devices provides greater device benefits for interested parties. To ensure its real-time implementation, the system must be efficient, low computational complexity, and high scalability."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Manullang, Miranda Rosely
"Karet adalah salah satu komoditas yang memberikan kontribusi yang signifikan dalam ekonomi Indonesia. Indonesia menempati posisi kedua sebagai produsen karet terbesar di dunia. Namun, sejak 2017, penyakit gugur daun karet Pestalotiopsis yang disebabkan oleh Pestalotiopsis sp. telah menjadi ancaman serius bagi budidaya karet dan menyebabkan kerugian ekonomi. Penyakit ini menginfeksi daun, menyebabkan nekrosis dan keguguran daun yang berkelanjutan, yang menghambat fotosintesis. Luas area perkebunan karet yang terjangkit penyakit ini sebesar 382.000 ha pada 2019 dan bertambah seluas 30.328,84 ha pada 2021, menyebabkan hilangnya produksi getah karet (lateks) hingga 30%. Penyakit ini menyebabkan kerugian ekonomi milyaran rupiah dan biaya pengendalian yang mahal, sehingga perlu dilakukan pendeteksian dini agar memungkinkan langkah intervensi yang cepat. Namun, Pendeteksian konvensional membutuhkan waktu, tenaga, dan biaya yang tinggi serta keahlian khusus. Oleh karena itu, pada penelitian ini, dikembangkan model deep learning untuk mengurangi waktu, biaya, dan tenaga dalam mendeteksi tingkat keparahan penyakit gugur daun karet Pestalotiopsis ke dalam 5 tingkat, sesuai dengan penelitian yang dilakukan oleh Pusat Penelitian Karet Sembawa pada tahun 2022. Pada penelitian ini, pendekatan yang dilakukan adalah dengan melatih YOLOv8 segmentation untuk menyegmen bercak pada daun yang menyatakan tingkan keparahan penyakit gugur daun Pestalotiopsis dan tulang daun dari data citra daun karet. Selanjutnya, untuk melatih model klasifikasi ResNeSt, digunakan data citra yang telah disegmentasi oleh model YOLOv8 segmentation yang sudah terlatih. Dengan demikian, klasifikasi tingkat keparahan penyakit gugur daun karet Pestalotiopsis dilakukan dengan hanya memandang bercak penyakit dan tulang daun karet, tanpa memperhatikan warna keseluruhan daun. Metrik yang digunakan adalah precision, recall, mAP50, mAP50-95, dan akurasi. Precision adalah persentase prediksi positif yang benar dari semua prediksi positif, recall adalah persentase kasus positif yang benar-benar teridentifikasi, mAP50 adalah rata-rata precision pada berbagai nilai recall dengan nilai threshold 50, dan mAP50-95 adalah rata-rata precision pada nilai threshold dari 50 hingga 95. Akurasi mengukur persentase prediksi yang benar oleh model secara keseluruhan. Pelatihan model YOLOv8 segmentation menghasilkan rata-rata precision keseluruhan sebesar 70,4%, recall sebesar 68,60%, mAP50 sebesar 64,10%, dan mAP50-95 sebesar 33,64%. Pelatihan model klasifikasi ResNeSt menggunakan data citra yang disegmentasi menggunakan YOLOv8 segmentation menghasilkan akurasi sebesar 78,65%, precision 80,12%, dan recall 79,14%.

Rubber is a commodity that makes a significant contribution to the Indonesian economy. Indonesia occupies the second position as the largest rubber producer in the world, with total production reaching 3.12 million tons (Dekarindo, 2021). However, since 2017, the Pestalotiopsis rubber leaf fall disease caused by Pestalotiopsis sp. has become a serious threat to rubber cultivation and caused economic losses. The disease infects the leaves, causing ongoing necrosis and leaf drop, which inhibits photosynthesis. The area of ​​rubber plantations affected by this disease was 382,000 ha in 2019 and increased by 30,328.84 ha in 2021, causing a loss of rubber latex production of up to 30% (Damiri et al., 2022). This disease causes economic losses of billions of rupiah and expensive control costs, so early detection is necessary to enable rapid intervention. However, conventional detection requires high time, effort and costs as well as special expertise. Therefore, in this research, a deep learning model was developed to reduce the time, costs and energy in detecting the severity of the Pestalotiopsis rubber leaf fall disease into 5 levels, in accordance with research conducted by the Sembawa Rubber Research Center. In this study, the approach used is to train YOLOv8 segmentation to segment Pestalotiopsis leaf fall disease spots and leaf veins from rubber leaf image data. Furthermore, to train the ResNeSt classification model, image data that has been segmented by the trained YOLOv8 segmentation model is used. Thus, the classification of the severity of Pestalotiopsis rubber leaf fall disease is carried out by only looking at the disease spots and rubber leaf veins, without considering the overall color of the leaf. The metrics used are precision, recall, mAP50, mAP50-95, and accuracy. Precision is the percentage of correct positive predictions from all positive predictions, recall is the percentage of positive cases that are actually identified, mAP50 is the average precision at various recall values ​​with a threshold value of 50, and mAP50-95 is the average precision at the threshold value from 50 to 95. Accuracy measures the percentage of correct predictions by the model overall. Training the YOLOv8 segmentation model produced an overall average precision of 70.4%, recall of 68.60%, mAP50 of 64.10%, and mAP50-95 of 33.64%. Training the ResNeSt classification model using image data segmented using YOLOv8 segmentation resulted in an accuracy of 78.65%, precision of 80.12%, and recall of 79.14%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Andreas Sudana
"

Pengembangan algoritma untuk kendali quadrotor semakin masif dilakukan oleh peneliti diseluruh dunia. Sama seperti manusia yang melihat dan kemudian dapat mendekati dan menyentuh suatu obyek, penelitian ini juga diarahkan untuk menciptakan prinsip yang sama yang kami sebut sebagai Image Loop Control (ILC). Proses pendeteksian objek memanfaatkan kecerdasan buatan YOLOv8 (AI deep learning) sebagai state-of-the-art pada dunia pendeteksian objek kecil membawa performa pendeteksian objek kecil ke tingkat yang lebih tinggi dengan inovasinya yang revolusioner. Penerapannya di quadrotor diharapkan dapat memungkinkan tingkat otonomi pada otomasi quadrotor melalui image loop control tersebut. Di dalam ILC tetap digunakan kendali Proporsional dan Differensial (PD) untuk mengendalikan gerak pada tiap sumbu gerakan. Skripsi ini melaporkan gerak yaw yang dilakukan oleh quadrotor sebagai respon dari deteksi obyek oleh YOLOv8. Pada proses validasi hasil pelatihan dataset, sebesar 96% gambar pintu tertutup terdeteksi sebagai close, 94% gambar pintu terbuka terdeteksi sebagai open, dan 87% gambar pintu setengah terbuka terdeteksi sebagai semi. Hasil proses image loop control respon kontroler PD di sumbu yaw, memiliki rata-rata time delay sebesar 0,98 detik, rata-rata rise time sebesar 1,26 detik, dan rata-rata settling time sebesar 8,62 detik menggunakan nilai Kp = 1,2 dan Kd = 0,5.


The development of quadrotor control algorithm has been extensively pursued by numerous researchers around the world. Similar to how humans can look, move around, and interact with an object, this research aims to achieve the same through a principle we define as the Image Loop Control (ILC). The process of object detection using the artificial intelligence YOLOv8 (deep learning AI) as the state-of-the-art in the small object detection world has brought the performance of small object detection algorithms to a higher level thanks to its revolutionary innovation. Its implementation in a quadrotor may enhance the degree of autonomy on automated quadrotors by using an image loop control. Within the ILC framework, we use a Proportional and Differential (PD) controller to control quadrotor movements along each axis. This thesis presents the performance of yawing movements executed by the quadrotor in response to object detections identified by the YOLOv8. During the validation process of the trained dataset, the system detected 96% of closed doors accurately, 94% of open doors accurately, and 87% of semi opened doors accurately. The response of the image loop control response using a PD controller on the yaw axis resulted in an average time delay of 0.98 seconds, average rise time of 1.26 seconds, and average settling time of 8.62 seconds with the values Kp = 1.2 and Kd = 0.5."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaky Nuryasin
"Kecerdasan buatan (artificial intelligence, AI) merupakan teknologi yang sedang berkembang dengan cepat pada masa ini. Adanya teknologi AI membuat banyak permasalahan sederhana dan kompleks dapat diatasi dengan program komputer. Salah satu penerapan dari teknologi AI yang memiliki perkembangan yang besar adalah pada computer vision, yang mana dapat dibuat program yang dapat mendeteksi dan mengklasifikasi objek pada suatu gambar. Pada bidang ini, computer vision dapat digunakan untuk mendeteksi rokok. Algoritma dapat dibuat untuk mengetahui jika ada objek rokok dan lokasi dari rokok tersebut pada gambar. Hal ini dapat berguna untuk menyensor rokok pada media video yang dikonsumsi oleh anak-anak. Pada media video, biasanya sensor dilakukan dengan cara manual dan dengan bantuan tracking. Cara ini dapat melelahkan karena walaupun dengan tracking, harus ada orang sebagai pendeteksi yang menunjukkan lokasi objek rokok secara berkala. Terdapat banyak arsitektur dan model algoritma untuk deteksi objek, salah satunya adalah YOLOv8 (You Only Look Once version 8). YOLOv8 adalah versi terbaru dari algoritma YOLO, yang mana merupakan salah satu algoritma state-of-the-art dalam deteksi objek. YOLO merupakan model dari Convolutional Neural Network (CNN) yang melakukan deteksi dengan konsep single stage detector, yaitu algoritma ini melakukan deteksi objek dengan menggunakan keseluruhan gambar sekaligus untuk menjadi masukan input neural network-nya. Cara ini membuat YOLO memiliki tingkat kecepatan yang tinggi mendekati real-time. Selain deteksi objek, diterapkan juga algoritma tracking yang berfungsi untuk menandai pergerakan objek rokok pada video. Sehingga objek rokok akan tetap disensor walaupun terjadi perubahan cahaya, terhalang objek lain, dan gangguan visual lainnya pada video. Algoritma tracking yang digunakan pada penelitian ini adalah ByteTrack. ByteTrack adalah algoritma tracking yang menggunakan komputasi yang minim karena dapat melakukan tracking dengan hanya memproses lokasi bounding box tiap frame video. Perbedaan algoritma ini dibandingkan yang lain adalah ByteTrack akan memanfaatkan semua hasil deteksi objek walaupun terdapat nilai confidence yang kecil. Pada penelitian ini didapatkan model training terbaik dari YOLOv8 dengan nilai presisi sebesar 86,5%, nilai recall sebesar 86,1%, nilai mAP 50 sebesar 88,1%, dan nilai mAP 50:95 sebesar 58,3%. Lalu pada konfigurasi confidence ByteTrack didapatkan hasil terbaik dengan pada confidence tahap pertama sebesar 0,247 dan tahap kedua sebesar 0,01. Hasil tracking ini mendapatkan nilai presisi sebesar 62,3%, nilai recall sebesar 62,7%, nilai akurasi sebesar 45,5%, dan nilai F1 sebesar 62,5%.

Artificial intelligence (AI) is a technology that is developing rapidly and popular in this era. AI technology creates the possibility to solve and overcome many simple complex problems. One example of the application of AI technology that has great development is computer vision, which is a concept that can make a computer program to detect and classify objects in an image.  Using computer vision, this technology can be used to detect cigarette. From image or video media, the algorithm can check if there is any cigarette and then locate the object in the image. This is useful to censor cigarette from media that consumed by children. On video medium, censorship usually done manually with the help of object tracking. This method can be tiring because even if object tracking is used, there must be a person as a detector that locate the cigarette every few frames. There are many architectures and models for object detection, YOLOv8 (You Only Look Once version 8) is one of them. YOLOv8 is the latest version of YOLO algorithm. YOLOv8 is considered as one of the state-of-the-art algorithm for object detection.  YOLO model is based from Convolutional Neural Network (CNN). The concept of this algorithm to detect object is called single stage detector, which means that it takes the whole image as input for its neural network thus only single image process needed. This concept makes YOLO fast to detect objects. Object tracking algorithm is also used to keep track detected cigarette even if there is a change in light, occlusion from other object, and other visual changes in the video. ByteTrack is used for the tracking algorithm in this study. ByteTrack works by processing bounding box location of each frame in video, making it use little computation. The main difference of this algorithm is that it process all bounding boxes from the object detection, including detected object with low confidence score. In this study, the YOLOv8 model managed to obtain the best performance with precision value of 86.5%, recall value of 86.1%, mAP 50 value of 88.1%, and mAp 50:95 value of 58.3%. For the confidence configuration of ByteTrack, best performance is achieved with 0.247 confidence score for the first association and 0.01 confidence score for the second association. The result of this configuration is a precision value of 62.5%, a recall value of 62.7%, an accuracy value of 45.5%, and a F1 score of 62.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library