Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Maulana Bisyir Azhari
Abstrak :
Identifikasi sistem dinamik merupakan tahapan awal dalam melakukan perancangan algoritma kendali pada suatu sistem dinamik. Namun, pada sistem dinamik yang multivariabel, tidak linier dan kopling tinggi-seperti pada misil AIM-9L Sidewinder-identifikasi sistem dinamik umumnya akan gagal dan sering terjadi simplifikasi pada sistem yang diidentifikasi, seperti dekopling dan linearisasi sistem. Pada penelitian ini, identifikasi sistem dinamik misil dilakukan dengan menggunakan algoritma artificial neural network dengan harapan karakteristik sistem dinamik tetap terjaga dengan baik. Penerbangan misil dilakukan dengan menggunakan simulator X-Plane dan akuisisi data penerbangannya dilakukan menggunakan bahasa pemrogramman python. Penerbangan dilakukan dengan sinyal referensi swept-sine dan zig-zag untuk mancakup banyak kemungkinan penerbangan misil. Hasilnya, artificial neural networks dapat melakukan pemetaan pola sistem dinamik misil dengan standardized MSE 7.155x10^(-2).
Dynamical system identification is the very first step in designing a control algorithm on a dynamic system. However, in the multivariate, nonlinear and coupled dynamical system-like the AIM-9L Sidewinder missile-dynamical system identifications are often failed and oversimplified the dynamical system, such as decoupling and linearization. In this research, system identification is done by using artificial neural networks algorithm with expectations that its characteristics will be maintained well. The missile flights are done by using the X-Plane flight simulator and the acquisition process is done by using python language. The flights use swept sine and zig-zag references to cover lots of missile flight conditions possibility. As a result, artificial neural networks can do missile dynamical pattern mapping with 7.155x10^(-2) standardized mean squared errors.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putu Bagus Raka Kesawa
Abstrak :
Kemajuan umat manusia dalam penerbangan modern sangat bergantung pada kemampuan untuk melakukan pemodelan sistem idenifikasi penerbangan dari suatu wahana pernerbangan. Pemodelan suatu sistem identifikasi penerbangan bergantung dengan tingkat kualitas dan kuantitas dari data simulasi yang digunakan untuk mendapatkan pendekatan situasi dan kondisi penerbangan aktual yang seakurat mungkin. Akurasi dan presisi dari data simulasi yang digunakan dalam pemodelan sistem penerbangan akan mempengaruhi hasil algoritma yang digunakan dalam sistem identifikasi. Dalam pencapaian kualitas data tersebut, digunakanlah perangkat lunak X-Plane yang berfungsi sebagai simulator penerbangan ultra-realistis yang menyuplai set data yang memungkinkan pembelajaran mesin dari algoritma berbasis komputer. Data pembelajaran pesawat terbang terdiri dari attitude orientasi pesawat. Data yang diperoleh dari simulator tersebut akan diproseskan menggunakan metode preprocessing, sehingga layak digunakan untuk pelatihan sistem identifikasi. Suatu algoritma artificial neural network diterapkan untuk mengidentifikasi sistem pesawat dengan mempelajari dataset yang disebutkan di atas, yang kemudian akan digunakan dalam pengembangan perancangan sistem kontrol. Algoritma artificial neural network yang dirancang dalam penelitian ini telah menunjukkan keberhasilan dalam sistem identifikasi untuk sistem penerbangan pesawat, dan siap digunakan dalam percobaan dan pengujian sistem kontrol pada pesawat. ......Humanitys progress in modern aviation is very dependent on the ability to model the flight identification system of a flight vehicle. Modeling a flight identification system depends on the quality and quantity of simulation data used to get the most accurate representation of the actual flight situation and condition. The accuracy and precision of the simulation data used in the flight system modeling will affect the results of the algorithm used in the identification system. In achieving this data quality, X-Plane software is used which functions as an ultra realistic flight simulator that supplies data sets that enable machine learning from computer based algorithms. Airplane learning data consists of airplane orientation attitude. Data obtained from the simulator will be processed using the preprocessing method, so it is feasible to use for identification system training. An artificial neural network algorithm is applied to identify aircraft systems by studying the dataset mentioned above, which will then be used in the development of control system design. The artificial neural network algorithm designed in this study has shown success in the identification system for aircraft flight systems, and is ready to be used in the testing and testing of control systems on aircraft.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aji Setyoko
Abstrak :
Berbagai metode pengembangan roket telah dilakukan, namun tidak semua orang bisa mengikuti perkembangannya karena teknologi roket merupakan teknologi rahasia yang pada akhirnya menyebabkan tidak adanya referensi. Kendali roket merupakan tahapan yang paling penting dari pengembangan teknologi roket yang pengembangannya hanya bisa dilakukan jika mempunyai data atau model. Penelitian ini mencoba untuk mendapatkan data penerbangan roket dari simulator pesawat X-Plane kemudian mengembangkan kendali roket menggunakan Neural Network. Konsekuensi yang ditimbulkan karena pemakaian simulator pesawat untuk menerbangkan roket akan dijadikan bahan analisis apakah data yang dihasilkan dari penerbangan roket mempunyai mekanisme fisika layaknya roket. Pengujian terhadap sistem kendali Neural Network berbasis Direct Inverse Control Open-Loop dilakukan untuk mengetahui keandalan sistem kendali yang dirancang. Sistem kendali roket yang dibuat menggunakan metode backpropagation dengan pembatasan pengendalian yaitu hover, sebuah trajectory terbang roket yang mempunyai pengaruh paling besar dalam jangkauan dan arahnya. Dari hasil pengujian ini diketahui bahwa data yang dihasilkan mempunyai dinamika gerak layaknya roket dan sistem kendali hover roket yang dibuat mempunyai kemampuan yang baik.
Various methods of rocket development have been done, but not everyone can follow its development because rocket technology is a secret technology that ultimately leads to no reference Rocket control is the most important stage of development of rocket technology whose development can only be done if it has data or models. In this study trying to get rocket flight data from the X Plane aircraft simulator then develop rocket control using Neural Network. The consequences of using the aircraft simulator to fly the rocket will be used as an analysis material whether the data generated from the rocket flight has a rocket physics mechanism. Testing of Neural Network control system based on Direct Inverse Control Open Loop is done to know the reliability of control system designed. The rocket control system created using backpropagation method with control limitation is hover, a rocket flying trajectory that has the greatest influence in its range and direction. From the results of this test is known that the resulting data has the dynamics of motion like a rocket and rocket hover control system is made to have good ability.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fathi Fadlian
Abstrak :
Pengendalian pesawat terbang merupakan suatu tahap terpenting dalam pengembangan teknologi aviasi yang hanya dapat dilakukan jika memiliki data penerbangan dan model pesawat. Pengambilan data penerbangan dilakukan menggunakan simulator penerbangan ultra-realistis, X-Plane. Algoritma Neural Networks dipilih sebagai metode untuk memodelkan dan mengidentifikasi sistem pesawat terbang juga sebagai pengendali sistem tersebut yang akan terbentuk dalam sebuah kesatuan Direct Inverse Control. Pengujian dan pembelajaran open loop pada sistem Direct Inverse Control dilakukan untuk mengetahui keandalan sistem kendali yang dirancang. Batasan pada penelitian ini adalah kondisi cruising ideal dimana merupakan kondisi terbang pesawat yang memakan hampir 90% dari total penerbangan. Dari hasil pengujian dapat diketahui bahwa data yang dihasilkan simulator sesuai dengan dinamika pergerakan pesawat terbang pada kondisi cruising dan sistem kendali yang dibuat memiliki keandalan yang baik. ......Flight control is the most important stage in the development of aviation technology which can only be done if flight data and aircraft models have been acquired. Flight data acquisition is carried out using an ultra-realistic flight simulator, X-Plane. Neural Networks algorithm is chosen as a method for modeling and identifying aircraft systems as well as controlling the system which will be formed in a Direct Inverse Control unit. Open loop testing and learning in the Direct Inverse Control system is carried out to determine the reliability of the designed control system. The limit of this study is in the ideal cruising conditions which consume almost 90% of total flights time. From the test results, it can be seen that the data generated by the simulator is in accordance with the dynamics of aircraft movements in cruising conditions and the designed control system has good reliability.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library