Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Bayu Sari Adji
"Perubahan iklim dunia menuju pemanasan global menjadi isu kritikal saat ini yang sangat mendesak untuk mendapatkan penyelesaian. Pada industri minyak dan gas, unit pemisahan gas asam atau acid gas removal unit (AGRU) masih banyak melepaskan gas CO2 ke atmosfer yang akan merusak lingkungan. Proses teknologi hidrogenasi CO2 menjadi metanol menggunakan katalis tembaga dipandang dapat menjadi salah satu solusi mengolah buangan CO2 unit AGRU. Reaktor sebagai alat proses yang sangat penting tempat reaksi kimia berlangsung harus dapat didesain sebaik mungkin agar hasil produksi dapat mencapai spesifikasi yang diinginkan. Studi ini bertujuan untuk mendesain reaktor proses hidrogenasi CO2 menjadi metanol dengan metode simulasi menggunakan COMSOL multiphysics dan UniSim. Konversi CO2 menjadi metanol relatif kecil dan dibatasi oleh konversi kesetimbangan serta panas reaksi yang harus dikendalikan karena reaksi eksotermis. Oleh karena itu rancangan reaktor diupayakan dapat menaikkan konversi dan mengendalikan panas yang terbentuk dengan cara penerapan reaktor unggun diam bertahap dengan pendinginan dan pemisahan metanol-air antar tahap unggun reaktor. Validasi dengan data literatur berupa hasil eksperimen An Xin et.al. yang menggunakan reaktor unggun diam pada tekanan 50 Bar pada berbagai temperatur operasi yaitu 210 °C, 230 °C, 250 °C dan 270 °C. Hasil eksperimen menunjukan adanya kesesuaian hasil simulasi dengan data eksperimen tersebut untuk konversi CO2 dan yield metanol. Validasi dengan menggunakan data pabrik metanol skala komersial pada literatur juga menunjukkan hasil yang cukup memuaskan dengan deviasi di bawah 9.99%. Konversi tertinggi CO2 untuk produksi metanol hasil simulasi didapat pada temperatur 232 °C. Hasil simulasi menunjukkan bahwa sintesis metanol kurang efisien pada temperatur yang lebih tinggi dari 232°C dikarenakan sifat reaksi yang eksotermis. Dimensi reaktor yang dirancang dalam penelitian ini dengan diameter 1.5 meter, dengan 5 tahap unggun dan tinggi tiap unggun ( bed ) pada rentang 0,5 - 1 meter, dapat menghasilkan metanol sebesar 5698 kg/jam (136.75 ton/hari) dari hasil olahan aliran CO2 gas buangan AGRU sehingga hasil konversi total CO2 menjadi metanol meningkat sebesar 71.5% dibandingkan dengan reaktor satu tahap. 

A world climate change towards global warming has been a critical issues which currently need a sustainable solution. In the oil and gas industry, acid gas removal unit releases a significant amount of   into the atmosphere which critical to the environment. The process technology of CO2 hydrogenation into methanol using copper catalyst has been considered as a potential solution to treat the released CO2. Reactor is the key process equipment where the chemical reaction is performed thus must be designed properly to ensure the product will meet the required specification. This study aims to design a reactor for CO2 hydrogenation into methanol utilizing COMSOL multiphysics and UniSim process simulation. CO2 conversion to methanol has a relatively small value as limited by its equilibrium and was inhibited by the exothermic heat reaction released that shall be well managed. Therefore a novel reactor design is developed to increase the overall conversion of CO2 into methanol as well as to control the released heat with implementation of an adiabatic multistage fixed bed reactor with inter-stage cooling and methanol-water removal. Validation of the model with experiment from AnXin et.al was performed at pressure of 50 Bar and varied temperature of  210 °C, 230 °C, 250 °C and 270 °C to ensure simulation accuracy. The simulation result shows a good agreement with the reference data in term of the CO2 conversion as well as methanol yield for both laboratory scale and industrial benchmark data. The highest conversion was achieved at the temperature of 232 oC at 50 Bar and it was found that that methanol synthesis was not efficient to be conducted at a higher temperature than 232oC due to its exothemic nature of the reaction. A fixed bed reactor with the dimension of 1.5 meter diameter and 5 stages of multibed configuration can process a 5 MMSCFD feed gas from AGRU to produce methanol at rate of 5698 kg/h (136.75 ton/day) which is 5 times higer than can be produced from a single stage fixed bed reactor."
Depok: Fakultas Teknik Universitas Indonesia, 2020
D2720
UI - Disertasi Membership  Universitas Indonesia Library
cover
Agustina Rahayu
"Gasifikasi pada umumnya menghasilkan gas sintesis dengan rasio mol H2/CO < 2. Gasifikasi dengan menggunakan uap air dapat meningkatkan komposisi H2 dalam gas sintesis. Kinetika reaksi gasifikasi dapat ditingkatkan dengan menggunakan katalis K2CO3. Laju pemanasan terkontrol menentukan ukuran pori arang yang berpengaruh pada luas permukaan reaksi gasifikasi dan komposisi H2 dan CO dalam gas sintetis. Penelitian sebelumnya, pirolisis dilakukan tanpa memperhatikan kecepatan pirolisis. Percobaan dilakukan dengan metode steam catalytic gasification yang diarahkan untuk mencapai kondisi optimum untuk menghasilkan yield gas sintesis maksimum dengan rasio mol H2/CO≈2 dengan menggunakan arang batubara dengan luas permukaan yang telah diketahui. Laju pemanasan yang cepat pada tahap pirolisis akan meningkatkan surface area arang, sehingga yield gas akan meningkat. Penelitian ini dilakukan dengan mengumpankan partikel arang batubara lignit Indonesia dan katalis K2CO3 ke dalam reaktor fixed bed dengan variasi rasio steam/char (2,2; 2,9; 4,0), dan suhu gasifikasi (750˚C, 825˚C, dan 900˚C). Rasio H2/CO tertinggi yang didapat dari kondisi suhu 750˚C dan rasio steam/char 2,2 yaitu 1,682. Yield gas terbesar yang didapat dari penelitian ini adalah 0,504 mol/g pada suhu 900˚C dan rasio steam/char 2,9. Kondisi optimum untuk produksi gas sintesis adalah pada suhu 750˚C dan rasio steam/char 2,2 dengan yield 0,353 dan rasio H2/CO 1,682.

Generally, gasification produces syngas with H2/CO mole ratio <2. Gasification uses steam to improve the composition of H2 in the syngas. Gasification reaction kinetics can be improved by using K2CO3 catalyst. Controlled heating rate determines the pore size of charcoal that affects surface area of gasification reaction and composition of H2 and CO in the syngas. Previous studies, pyrolisis process was performed without regard to pyrolysis rate. Experiments was performed by catalytic steam gasification using charcoal which has known surface area to achieve optimum conditions and produce maximum yield of syngas with mole ratio of H2/CO ≈ 2. Rapid heating rate on pyrolysis stage will increase the surface area of charcoal, so it will increase gas yield. This study was performed by feeding Indonesian charcoal particles and K2CO3 catalyst into fixed bed reactor with variation of ratio of steam/charcoal (2.2; 2.9; 4.0), and gasification temperature (750˚C, 825˚C, and 900˚C). Highest ratio of H2/CO obtained at temperature of 750˚C and steam/charcoal ratio of 2.2 was 1.682. Largest gas yield obtained from this study was 0.504 mol/g at temperature of 900˚C and steam/charcoal ratio of 2.9. The optimum conditions for syngas production was temperature of 750˚C and steam/charcoal ratio of 2.2 with gas yield of 0.353 and H2/CO ratio of 1.682."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35466
UI - Tesis Membership  Universitas Indonesia Library
cover
Nafisa Dewi Shafira
"Gamma-valerolakton (GVL) adalah senyawa organik turunan dari asam levulinat yang memiliki banyak manfaat di berbagai sektor. Penelitian ini dilakukan untuk mengetahui pengaruh tekanan dan suhu gas umpan terhadap kinerja reaktor trickle bed untuk produksi GVL dari segi konversi asam levulinat, yield GVL, dan selektivitas GVL. Mekanisme yang terjadi adalah asam levulinat yang sudah dilarutkan dengan air deionisasi akan melalui proses hidrogenasi menghasilkan senyawa intermediet yaitu 4-HPA. Kemudian, terjadi proses esterifikasi intermolekul untuk menghasilkan GVL. Katalis yang digunakan adalah Ru/C dengan muatan Ru sebesar 5 wt%. Eksperimen diawali dengan persiapan bahan baku, lalu dilakukan karakterisasi katalis. Kemudian digunakan reaktor berdiameter 2,01 cm den gan unggun katalis setinggi 24 cm. Reaktan cair (asam levulinat) dan gas hidrogen direaksikan dengan kondisi operasi temperatur 90 °C – 150 °C, dan tekanan 5 dan 10 bar. Penelitian pada tekanan rendah dilakukan untuk mengurangi penggunaan hidrogen berlebih sehingga proses menjadi lebih ekonomis. Setelah reaksi berlangsung, asam levulinat sebagai bahan baku terkonversi menjadi dua senyawa yaitu 4-HPA dan GVL. Produk kemudian dianalisis dengan High-Performance Liquid Chromatography. Setelah berlangsungnya reaksi, asam levulinat sebagai bahan baku terkonversi menjadi dua jenis produk, yaitu senyawa intermediate 4-HPA dan produk utama GVL. Pada penelitian ini, kondisi terbaik untuk memproduksi GVL adalah pada tekanan 10 bar dan suhu 150 °C dengan yield GVL 72%, selektivitas GVL 73%, dan konversi asam levulinat 97%. Berdasarkan tren yang diamati, semakin meningkatnya tekanan dan suhu yang digunakan, maka hasil yang diperoleh semakin optimal.

Gamma-valerolactone (GVL) is an organic compound derived from levulinic acid which has many benefits in various sectors. This research was conducted to determine the effect of feed gas pressure and temperature on the performance of trickle bed reactors for GVL production in terms of levulinic acid conversion, GVL yield, and GVL selectivity. The mechanism that occurs is that levulinic acid which has been dissolved in deionized water will go through a hydrogenation process to produce an intermediate compound, namely 4-HPA. Then, an intermolecular esterification process occurs to produce GVL. The catalyst used was Ru/C with a 5 wt% Ru. The experiment started with raw material preparation, and catalyst characterization, then a 2.01 cm diameter reactor with a 24 cm high catalyst bed was used. Liquid reactants (levulinic acid) and hydrogen gas were reacted under operating conditions of temperature 90 °C – 150 °C, and pressures of 5 and 10 bar. Research at low pressure is carried out to reduce the use of excess hydrogen so that the process becomes more economical. After the reaction takes place, levulinic acid as a raw material is converted into several compounds including levulinic acid, 4-HPA, and GVL. Products were analyzed with High-Performance Liquid Chromatography. After the reaction takes place, levulinic acid as a raw material is converted into two types of products, namely the intermediate compound 4-HPA and the main product GVL. In this study, the best conditions for producing GVL were at a pressure of 10 bar and a temperature of 150 °C with a yield of 72% GVL, 73% selectivity of GVL, and 97% conversion of levulinic acid. Based on the observed trend, the higher the pressure and temperature used, the more optimal the results obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Piero Collins
"Tujuan dari penelitian ini adalah untuk mendapatkan model reaktor unggun diam 2D yang valid untuk sintesis dimetil eter melalui dehidrasi metanol, mendapatkan parameter kinetika melalui studi kinetik, serta mendapatkan pengaruh parameter proses dan geometri terhadap kinerja reaktor melalui studi sensitivitas. Metode penelitian ini terdiri dari penentuan geometri, penentuan model matematis, simulasi, dan analisis dan pembahasan Model matematis dikembangkan melalui persamaan neraca massa (celah unggun dan katalis), neraca momentum, dan neraca energi. Pada studi kinetik, reaktor dimodelkan berbentuk silinder dengan diameter 24 mm dan tinggi 600 mm. Hasil dari studi kinetik menghasilkan nilai energi aktivasi reaksi dehidrasi metanol sebesar 50,4 kJ/mol, nilai faktor eksponensial sebesar 1782 mol.m.s/kg2, nilai panas adsorpsi air sebesar -31,17 kJ/mol dan panas adsorpsi metanol sebesar -1,73 kJ/mol. Pada studi sensitivitas, reaktor memiliki dimensi 5 cm dan tinggi 3 m. Hasil dari studi sensitivitas penelitian ini menunjukan bahwa konversi metanol dan yield DME terbaik yang dihasilkan berada saat temperatur umpan 563 K, tekanan umpan 7,5 bar, laju alir gas 24 ml/h, panjang reaktor 5 m, dan diameter reaktor 5 cm.

This study aimed to obtain a valid 2D stationary bed reactor model for the synthesis of dimethyl ether through methanol dehydration, obtain kinetic parameters through kinetic studies, and obtain the effect of process and geometry parameters on reactor performance through sensitivity studies. This research method consists of the determination of geometry, the determination of mathematical models, simulations, and analysis and discussion. Mathematical models are developed through mass balance equations (bed gap and catalyst), momentum balance, and energy balance. In the kinetic study, the reactor is modeled as a cylinder with a diameter of 24 mm and a height of 600 mm. The results of the kinetic study resulted in the activation energy value of the methanol dehydration reaction of 50.4 kJ/mol, the value of the exponential factor of 1782 mol.ms/kg2, the heat value of water adsorption of -31.17 kJ/mol and the heat of adsorption of methanol of -1, 73 kJ/mol. In the sensitivity study, the reactor has dimensions of 5 cm and a height of 3 m. The results of the sensitivity study of this study showed that the best methanol conversion and DME yields were at a feed temperature of 563 K, a feed pressure of 7.5 bar, a gas flow rate of 24 ml/h, a reactor length of 5 m, and a reactor diameter of 5 cm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alan Jose
"Model reaktor pembentukan metanol merupakan faktor yang penting untuk menentukan parameter kinetika reaksi pembentukan metanol. Walaupun demikian, model yang digunakan dalam riset-riset mengenai kinetika metanol yang ada masih menggunakan model yang disederhanakan. Graaf et.al (1982) mengevaluasi kinetika percobaanya dengan model CSTRsatu dimensi, sementara Froment dan Bussche (1996) mengevaluasi parameter kinetikanya dengan model reaktor homogen-semu satu dimensi. Penelitian ini bertujuan untuk memodelkan reaksi pembentukan metanol dalam sebuah reaktor unggun diam multitubular tiga dimensidengan menggunakan Computational Fluid Dynamics (CFD) yang dikoplingdengan efek perpindahan panas dan perpindahan massa dalam reaktor multitubular. Evaluasi model berupa karakterisasi pola aliran dalam tube dan shell, karakterisasi temperatur tube dan shell, distribusi konsentrasi dalam tube. Kondisi operasi reaktor suhu inlet tube sebesar 230°C, tekanan 76.89 bar, dan komposisi inlet seperti yang ditentukan darivalidasi penelitian oleh Samimi et.al (2018). Dari hasil simulasi didapat nilai optimal kecepatan aliran pendinginan sebesar 3 m/s dan parameter faktor tumbukkan laju reaksi A1 dan A7 sebesar 1.685 dan 1.6, dengan kesalahan parameter terbesar adalah konsentrasi CO sebesar 33% error.

The methanol formation reactor model is an important factor for determining the kinetics parameters of the methanol formation reaction. Nonetheless, the model used on existing research in methanol kinetics still uses a simplified model. Graaf et.al (1982) evaluated the experimental kinetics with the one dimensional CSTR model, while Froment and Bussche (1996) evaluated the kinetic parameters with the model of one dimensional pseudo homogeneous reactor. This study aims to model the reaction of methanol formation in a three-dimensional multitubular fixed bed reactor using Computational Fluid Dynamics (CFD) coupled with the effects of heat transfer and mass transfer in multitubular reactors. Evaluation of the model in the form of characterization of flow patterns in the tube and shell, characterization of tube and shell temperature, and characterization of concentration distribution in the tube. The operating conditions of the reactor inlet tube temperature are 230 ℃, pressure 76.89 bar, and the composition of the inlet as determined from the validation of research by Samimi et.al (2018). The simulation results obtained an optimal value of flow velocity 3 m/s and the collision factor of A1 and A7 is 1.6685 and 1.6 respectively, with the biggest error being the CO concentration of 33% error."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Agung Wicaksono
"Dimetil eter adalah senyawa organik dengan rumus kimia CH3OCH3 yang dapat dijadikan bahan bakar alternatif LPG. Tujuan dari penelitian ini adalah mendapatkan model reaktor unggun diam heterogen yang valid untuk sintesis DME dari CO2 pada katalis Cu-Fe-Zr/HZSM-5 sehingga diperoleh parameter kinetika yang dipakai untuk merancang reaktor unggun diam skala komersial. Model yang telah dikembangkan disimulasikan menggunakan software COMSOL Multiphysics 5.5. Validasi model dilakukan pada kondisi isotermal sehingga tidak ada neraca energi. Validasi model dilakukan dengan menyamakan konsentrasi luaran reaktor simulasi dan eksperimen dengan mengubah-ubah parameter kinetika. Faktor pra-eksponensial yang diperoleh untuk hidrogenasi CO2, hidrogenasi CO, RWGS, dan dehidrasi metanol masing-masing sebesar 6,3376 x 103 mol/kg.s, 5,12 x 10-2 mol/kg.s, 1,20863 x 105 mol/kg.s, dan 6 x 1029 mol/kg.s serta energi aktivasi masing-masing sebesar 1,8919 x 104 J/mol, 0 J/mol, 7,629 x 103 J/mol, dan 1 x 105 J/mol dengan range AARD (average absolute relative deviation) antara 6,3111-13,4582%. Parameter kinetika tersebut dipakai untuk merancang reaktor unggun diam skala komersial untuk target produksi DME sebesar 150.000 ton per tahun dengan memvariasikan suhu, tekanan, GHSV (gas hour space velocity), rasio H2/CO2, diameter katalis, dan geometri reaktor sehingga diperoleh volume reaktor terendah. Variasi suhu sebesar 240-280 oC, variasi tekanan sebesar 1-5 MPa, variasi GHSV sebesar 500-2500 mL/g.h, variasi rasio H2/CO2 sebesar 1:1-7:1, variasi diameter katalis sebesar 1-5 mm, variasi diameter unggun sebesar 5-20 cm, dan variasi panjang unggun sebesar 8-16 m. Hasil yang optimal diperoleh pada suhu 260 oC, tekanan 3 MPa, GHSV 2000 mL/g.h, rasio H2/CO2 4:1, diameter katalis 2 mm, diameter unggun 10 cm, dan panjang unggun 12 m dengan konsentrasi DME 12,1 mol/m3, laju alir massa DME 107,3 kg/d, dan jatuh tekan 0,20384 bar dengan jumlah tube sebanyak 3995 di dalam satu reaktor.

Dimethyl ether is an organic compound with the chemical formula CH3OCH3 which can be used as an alternative fuel for LPG. The objective of this study is to obtain a valid heterogeneous fixed bed reactor model for DME synthesis from CO2 on a Cu-Fe-Zr/HZSM-5 catalyst to obtain the kinetic parameters and used to design a commercial scale fixed bed reactor. The developed model was simulated using COMSOL Multiphysics 5.5 software. Model validation was carried out under isothermal conditions so there is no energy balance. Model validation was carried out by fitting the simulation and experimental concentration reactor output by varying the kinetic parameters. The pre-exponential factors obtained for CO2 hydrogenation, CO hydrogenation, RWGS, and methanol dehydration were 6.3376 x 103 mol/kg.s, 5.12 x 10-2 mol/kg.s, 1.20863 x 105 mol/kg.s, and 6 x 1029 mol/kg.s and the activation energies were 1.8919 x 104 J/mol, 0 J/mol, 7.629 x 103 J/mol, dan 1 x 105 J/mol with the AARD range (average absolute relative deviation) between 6,3111-13,4582%.These kinetic parameters are used to design a commercial scale fixed bed reactor for a DME production target of 150,000 ton per year by varying temperature, pressure, GHSV (gas hourly space velocity), H2/CO2 ratio, catalyst diameter, and reactor geometry to obtain the lowest reactor volume. Temperature variation of 240-280 oC, pressure variation of 1-5 MPa, GHSV variation of 500-2500 mL/g.h, H2/CO2 ratio variation of 1:1-7:1, catalyst diameter variation of 1-5 mm, reactor diameter variation of 5-20 cm, and reactor length variation of 8-16 m is used. Optimal results were obtained at 260 oC, pressure 3 MPa, GHSV 2000 mL/g.h, H2/CO2 ratio 4:1, catalyst diameter 2 mm, reactor diameter 10 cm, and reactor length 12 m with DME concentration of 12.1 mol/m3, mass flow rate of 107.3 kg/d, and pressure drop of 0.20384 bar with 3995 tubes in one reactor."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library