Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Tri Eko Putra Manvi
"Baterai Li-Ion banyak digunakan pada kendaraan listrik karena efisiensi dan densitas energinya yang tinggi. Untuk menjaga baterai Li-Ion beroperasi pada kondisi ideal maka estimasi status pengisian baterai menjadi indikator penting. Parameter yang menyatakan status pengisian baterai adalah State of Charge (SOC). Nilai SOC baterai tidak dapat diukur secara langsung melainkan harus diestimasi dari nilai tegangan dan arus baterai saat digunakan. Kesulitan saat mengestimasi SOC baterai disebabkan faktor nonlinearitasnya yang tinggi serta pengaruh noise saat pengukuran yang dapat mengakibatkan terjadinya akumulasi error. Algoritma Unscented Kalman Filter (UKF) dapat melakukan koreksi kesalahan saat mengestimasi SOC baterai. Namun teknik ini membutuhkan model baterai pada algoritmanya. Literatur yang membahas model baterai banyak menggunakan pendekatan Equivalent Circuit Model (ECM) Thevenin orde dua yang diperoleh dari data eksperimen Hybrid Pulse Power Characterization (HPPC). Beberapa literatur meninjau data HPPC yang seragam namun menggunakan berbagai pendekatan seperti teknik fitting, aturan waktu konstan, dan daerah analisis kurva baterai yang berbeda. Untuk mengetahui metode identifikasi parameter ECM terbaik maka dilakukan pengujian performa. Pada penelitian ini dianalisis empat metode identifikasi parameter ECM menggunakan baterai LiNiMnCo. Masing – masing parameter ECM disubsitusi ke model baterai lalu dilakukan verifikasi menggunakan data HPPC dan Dynamic Stress Test (DST). Berdasarkan nilai RMSE masing – masing percobaan, metode 1 yang menggunakan teknik fitting di daerah relaksasi baterai memiliki akurasi dan konsistensi yang terbaik yaitu 0,0103 V untuk HPPC menggunakan data CALCE dan 0,0088 V data baterai LG. Untuk pengujian DST nilai RMSE metode 1 adalah 0,0278 V. Parameter baterai yang telah diidentifikasi menggunakan metode 1 digunakan sebagai model pada algoritma UKF untuk mengestimasi SOC baterai. Nilai RMSE estimasi SOC menggunakan algoritma UKF yang telah dibangun adalah 0,32 %. Algoritma UKF mampu melakukan koreksi saat terjadi kesalahan awal nilai estimasi SOC.

Li-Ion batteries are widely used in electric vehicles due to their high efficiency and energy density. To keep Li-Ion batteries operating at ideal conditions, estimation of the battery state of charge is an important indicator. The parameter that states the state of charge of the battery is the State of Charge (SOC). The SOC value of the battery cannot be measured directly but must be estimated from the voltage and current values of the battery during use. The difficulty in estimating the battery SOC is due to its high nonlinearity factor and the influence of noise during measurement which can result in the accumulation of errors. The Unscented Kalman Filter (UKF) algorithm can perform error correction when estimating battery SOC. However, this technique requires a battery model in the algorithm. Much of the literature discussing battery models uses the second-order Thevenin Equivalent Circuit Model (ECM) approach obtained from Hybrid Pulse Power Characterization (HPPC) experimental data. Some literature reviews uniform HPPC data but uses various approaches such as fitting techniques, constant time rules, and different battery curve analysis regions. To determine the best ECM parameter identification method, performance testing is conducted. In this study, four ECM parameter identification methods using LiNiMnCo batteries are analyzed. Each ECM parameter is subsumed into the battery model and then verified using HPPC and Dynamic Stress Test (DST) data. Based on the RMSE value of each experiment, method 1 which uses fitting techniques in the battery relaxation region has the best accuracy and consistency, namely 0.0103 V for HPPC using CALCE data and 0.0088 V LG battery data. For DST testing the RMSE value of method 1 is 0.0278 V. The battery parameters that have been identified using method 1 are used as a model in the UKF algorithm to estimate the battery SOC. The RMSE value of SOC estimation using the UKF algorithm that has been built is 0.32 %. The UKF algorithm can make corrections when there is an initial error in the SOC estimation value."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Julian Permana
"Seiring dengan perubahan dunia yang sangat cepat, efisiensi dalam mengelola persediaan menjadi hal yang sangat penting, terutama bagi UKM. Ada beberapa sumber daya penting yang dibutuhkan oleh UKM untuk meningkatkan bisnis mereka: sejumlah dana, penguasaan teknologi, dan sumber daya manusia. Robotic Process Automation (RPA) sebagai salah satu teknologi unggulan di Industri 4.0 dapat mengatasi kebutuhan sumber daya manusia untuk melakukan tugas-tugas dalam manajemen persediaan. RPA dianggap sebagai salah satu teknologi modern yang memungkinkan UKM melakukan tugas berulang dengan lebih efisien sehingga menghasilkan kinerja organisasi yang lebih baik. Penelitian ini mengadopsi tahap Inisialisasi dan Implementasi dari The Consolidated Framework for Implementing RPA Project. Data bersumber dari salah satu UKM dalam bisnis kecantikan yang beroperasi di Provinsi Jawa Tengah- Indonesia, dimana bisnis kecantikan dianggap sebagai salah satu sektor yang berkembang pesat saat ini di Indonesia. Ruang lingkup penelitian ini difokuskan pada manajemen persediaan seperti pengecekan stok persediaan, peramalan permintaan produk berdasarkan data historis, membuat rencana pembelian, memesan barang ke vendor melalui email dan menindaklanjuti menggunakan email jika barang yang dipesan belum datang. Temuan penelitian ini menunjukkan bahwa penggunaan RPA dalam manajemen persediaan dapat menghemat banyak biaya yang sebelumnya dianggap sebagai beban. Adanya RPA di perusahaan telah berhasil membantu AuradermA Skin Care dalam mengelola persediaan dengan lancar, mengurangi beban kerja staf dan pada akhirnya memastikan persediaan tidak habis atau berlebihan. Diharapkan penelitian ini memberikan kontribusi dalam bidang RPA karena implementasi RPA belum begitu banyak ditemukan terutama untuk UKM.

State of Charge (SOC) is a condition that states battery charge condition. This condition is important to know to ensure safe battery operating condition. One of the challenge in estimating SOC is that the battery dynamic system. To estimate SOC, battery undergoes characterization process. The Li-Ion battery characterization system monitors voltage across the battery as well as current going to or out of the battery. After the system is assembled, battery will be prepared before characterization using Constant Current Constant Voltage (CCCV) charging. Characterization process starts with battery undergoing discharging and charging process. In this research, Li-Ion battery made from LiNiMnCoO2 is modelled based on second order Thevenin Equivalent Circuit Model. SOC estimation is optimized using Uscented Kalman Filter (UKF). Next, battery undergoes Hybrid Pulse Power Characterization (HPPC) test to obtain ECM parameters. Next, ECM parameters are used as value to be fitted with SOC from Coulomb Counting (CC) with seventh order polynomial method from HPPC result. SOC estimation validation is done using Dynamic Stress Test (DST). The SOC estimation result using UKF is compared to the estimation which doesn’t use UKF. The simulation and experiment result show that UKF algorithm is able to adjust its estimation result when given wrong initial SOC estimation value. The simulated SOC estimation result using UKF is compared with the CC method and reference SOC have Root-Mean Square Error (RMSE) of 0.7 % and Maximum Error (ME) of 9.9 %. The experiment SOC estimation result compared with CC SOC method has RMSE of 2.76 % and ME of 10%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library