Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Fityan Azizi
Abstrak :
Penyakit kardiovaskular merupakan penyakit dengan angka kematian tertinggi di dunia. Fungsi jantung perlu diperiksa secara akurat dan efisien agar penyakit kardiovaskular dapat terdeteksi dengan baik. Penilaian fungsi jantung umumnya dilakukan dengan memberi tanda ventrikel kiri secara manual. Hal tersebut memiliki kekurangan karena dapat memakan waktu, rawan kesalahan karena resolusi citra yang rendah, dan memiliki perbedaan hasil yang bervariasi antar pemeriksa. Oleh karena itu, penandaan ventrikel kiri secara otomatis dengan segmentasi sangat penting agar pemeriksaan fungsi jantung dapat dilakukan lebih efektif dan efisien. Dalam penelitian ini, dilakukan pengembangan model deep learning untuk pekerjaan segmentasi ventrikel kiri pada citra ekokardiografi menggunakan encoder yang dimiliki U-Net, ditambahkan dengan modul Atrous Spatial Pyramid Pooling dan decoder yang dimiliki DeeplabV3+. Selanjutnya, ditambahkan Coordinate Attention pada tahap akhir dalam encoder untuk penyempurnaan fitur. Dilakukan uji pada dataset Echonet-Dynamic, Hasil penelitian menunjukkan bahwa melakukan penggabungan antara encoder yang dimiliki U-Net dan decoder yang dimiliki DeeplabV3+ mampu memberikan peningkatan performa dibandingkan model U-Net dan DeeplabV3+, juga memberikan hasil yang lebih baik dibandingkan penelitian sebelumnya, dengan menghasilkan nilai dice similiarity coefficient sebesar 92.91%. ......Cardiovascular disease is a disease with the highest mortality rate in the world. Heart function needs to be checked accurately and efficiently so that cardiovascular disease can be detected properly. Assessment of cardiac function is generally done by marking the left ventricle manually. This has the drawbacks of being time-consuming, error-prone due to low image resolution, and have inter-observer variability. So that automatic marking of the left ventricle with segmentation is very important so that the examination of cardiac function can be carried out more effectively and efficiently. In this study, a deep learning model was developed for left ventricle segmentation on echocardiographic images using an encoder in U-Net, added with the Atrous Spatial Pyramid Pooling module and an decoder in DeeplabV3+. Furthermore, the Coordinate Attention Module was added at the final stage in the encoder for feature enhancements. Tests were carried out using the Echonet-Dynamic dataset. The results showed that combining the encoder in U-Net and the decoder in DeeplabV3+ was able to provide increased performance compared to the U-Net and DeeplabV3+ models, also gives better results than previous research, by producing a dice similarity coefficient of 92.91%.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hilda Auliana
Abstrak :
Dalam dokumen Global Tuberculosis Report 2022, World Health Organization (WHO) melaporkan bahwa Indonesia tercatat sebagai negara dengan beban kasus tuberkulosis (TB) terbanyak kedua setelah India pada tahun 2021 lalu, di mana terhitung dari estimasi 969.000 kasus penderita TB di Indonesia, terdapat 525.765 (54,3%) kasus diantaranya belum ditemukan dan diobati, ini berpotensi menjadi sumber penularan serta meningkatan risiko transmisi komunal jika tidak mendapatkan penanganan segera. Menanggapi hal tersebut, dengan kemajuan teknologi kecerdasan buatan yang ada serta melalui peran pencitraan medis sebagai salah satu metode skrining pendukung, dikembangkan sebuah model pendeteksian berbasis arsitektur U-Net yang mampu secara otomatis mengenali dan melokalisasi area berbagai jenis kelainan indikator TB paru pada citra rontgen thorax. Selain melakukan tuning parameter, dibandingkan beberapa kasus segmentasi semantik multi-kelas, diantaranya terdiri atas 14 kelas kelainan spesifik, 5 kelas kelompok kelainan, dan 3 kelas kelompok kelainan, serta kasus segmentasi semantik biner. Hasil memperlihatkan bahwa pada kasus multi-kelas, semakin sedikit kelas yang digunakan, maka semakin besar nilai dice score yang didapat, yaitu mencapai 0,71. Sementara, jika dibandingkan dengan kasus segmentasi biner, meski dice score mengalami peningkatan, namun berdasarkan hasil visualisasi, kasus segmentasi multi-kelas kurang mampu dalam mengenali kondisi paru normal atau tidak memiliki kelainan. ......In the Global Tuberculosis Report 2022 document, the World Health Organization (WHO) reports that Indonesia is listed as the country with the second highest burden of tuberculosis (TB) cases after India in 2021, where from an estimated 969.000 cases of TB sufferers in India, there are 525.765 ( 54,3%) cases of which have not been found and treated, this has the potential to become a source of transmission and increase the risk of communal transmission if treatment is not immediately received. In response to this, with advances in existing artificial intelligence technology and through the role of medical imaging as a screening support method, a detection model based on the U-Net architecture was developed that can automatically recognize and localize areas of various types of pulmonary TB marker indicators on chest X-ray images. In addition to parameter tuning, several cases of multi-class semantic segmentation were compared, which consisted of 14 specific disorder classes, 5 class disorder clusters, and 3 class disorder clusters, as well as cases of binary semantic segmentation. The results reveal that in the multi-class case, the fewer classes used, the greater the dice score obtained, which is 0,71. Meanwhile, when compared with binary segmentation cases, even though the dice score has increased, based on visualization results, multi-class segmentation cases are less able to recognize normal lung conditions or have no abnormalities.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahdia Aliyya Nuha Kiswanto
Abstrak :
Skripsi ini membahas mengenai penggunaan model segmentasi semantik UNet sebagai alternatif metode segmentasi wajah dan tangan gerakan isyarat SIBI (Sistem Isyarat Bahasa Indonesia) pada latar belakang kompleks. Penelitian dilakukan terhadap dataset gerakan isyarat SIBI milik Lab MLCV Fakultas Ilmu Komputer Universitas Indonesia. Dalam penelitian ini, dilakukan percobaan dengan tiga jenis konfigurasi UNet, yaitu UNet 4- level tanpa Batch Normalization, UNet 5-level tanpa Batch Normalization, dan UNet 4- level dengan Batch Normalization. Hasil segmentasi dari UNet konfigurasi terbaik kemudian dilakukan tahap pengenalan selanjutnya, yaitu ekstraksi fitur dengan MobileNetV2, penghapusan gerakan transisi dengan TCRF, dan gesture recognition dengan 2-layer biLSTM untuk mendapatkan hasil translasi serta evaluasi akhir. Selain itu, performa sistem dengan menggunakan metode segmentasi UNet dibandingkan dengan performa sistem dengan menggunakan metode segmentasi RetinaNet+Skin Color Segmentation. Hasil dari penelitian didapatkan bahwa konfigurasi UNet 4-level dengan Batch Normalization menghasilkan segmentasi yang sedikit lebih baik dibandingkan konfigurasi lainnya, yaitu dengan nilai IOU 0,9178% pada dataset berlatar belakang kompleks. Performa UNet terlihat baik pada saat kedua tangan berada di depan badan, dan menurun ketika tangan berada di posisi yang berdekatan dengan area kulit lainnya (lengan, leher, wajah). Didapatkan juga bahwa sistem pengenalan isyarat SIBI ke teks bahasa Indonesia dengan menggunakan metode segmentasi UNet berhasil memiliki performa yang lebih baik dibandingkan menggunakan metode segmentasi RetinaNet+Skin Color Segmentation, dengan nilai WER 2,703% dan SAcc 82,424% pada latar belakang kompleks. Didapatkan juga waktu komputasi UNet yang lebih cepat dibandingkan RetinaNet dengan waktu segmentasi 0,19643 detik per frame pada CPU NVIDIA DGX A100 ......This thesis discusses the use of the UNet semantic segmentation model as an alternative to hand and face segmentation methods for SIBI (Indonesian Signing System) on complex backgrounds. This research was conducted on SIBI gesture dataset by MLCV Lab (Faculty of Computer Science, Universitas Indonesia). In this study, experiments were conducted with three types of UNet configurations, namely 4-level UNet without Batch Normalization, 5-level UNet without Batch Normalization, and 4-level UNet with Batch Normalization. Segmentation results from the best UNet configuration is then carried out in the next stage of the system, namely feature extraction with MobileNetV2, epenthesis removal with TCRF, and gesture recognition with 2-layer biLSTM to obtain translation results and the final evaluations. In addition, system performance using the UNet segmentation method is compared to system performance using the RetinaNet+Skin Color Segmentation method. The results of the study showed that the 4-level UNet configuration with Batch Normalization produces slightly better segmentation than the other configurations, with an IOU of 0.9178% on a dataset with a complex background. Based on the sample results, UNet performance is good when both hands are on the front of the body, and it decreases when the hands are in close proximity to other skin areas (arms, neck, face). It was also found that the SIBI gesture recognition system to Indonesian text using the UNet segmentation method managed to have better performance than using the RetinaNet+Skin Color Segmentation, with a WER value of 2.703% and a SAcc of 82.424% on a complex background. It was also found that UNet processing time was faster than RetinaNet with a segmentation rate of 0.19643 seconds per frame on the NVIDIA DGX A100 CPU.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nisrina Dinda Dhamayanti
Abstrak :
Kanker kulit berasal dari lesi kulit yang memiliki penampilan atau pertumbuhan jaringan kulit yang tidak biasa. Melanoma adalah kanker kulit paling berbahaya dan menyebabkan banyak kematian jika tidak terdeteksi sedini mungkin. Pendeteksian sedini mungkin mendesak untuk dilakukan mengingat dapat meningkatkan angka survival rate sebesar 95%. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Teknologi deep learning dapat menjadi solusi yang dapat dimanfaatkan untuk melakukan segmentasi lesi kulit. Untuk penelitian ini, penulis mengusulkan penggunaan teknik Residual U-Net berbasis deep-convolutional neural network untuk segmentasi lesi kulit. Teknik Residual U-Net yang diusulkan menggunakan Residual Block, Group Normalization, dan Tversky Loss ke dalam arsitektur berbasis U-Net. Penggunaan Residual Block dapat mengatasi permasalahan error jaringan yang tinggi akibat adanya vanishing gradient serta meningkatkan ekstraksi representasi fitur gambar. Model dilatih dan dievaluasi menggunakan dataset yang berasal dari International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam melakukan segmentasi lesi kulit dengan nilai dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, dan precision masing-masing, sebesar 0.86, 0.76, 0.93, 0.88, 0.96, dan 0.85. ...... Skin cancer originates from skin lesions that have an unusual appearance or growth of skin tissue. Melanoma is the most dangerous skin cancer and causes many deaths if not detected early. Early detection is urgent to do considering it can increase the survival rate by 95%. The current detection method using the manual method is still less reliable and takes a lot of time. Deep learning technology can be a solution that can be used to segment skin lesions. For this study, the authors propose the use of a Residual U-Net technique based on a deep-convolutional neural network for segmenting skin lesions. The proposed Residual U-Net technique uses Residual Block, Group Normalization, and Tversky Loss into a U-Net-based architecture. The use of Residual Block can overcome the problem of high network error due to the vanishing gradient and improve the extraction of image feature representation. The model was trained and evaluated using a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This study succeeded in improving the model's performance in segmenting skin lesions with values ​​of dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, and precision of 0.86, 0.76 , 0.93, 0.88, 0.96, and 0.85.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Noor Dwi Eldianto
Abstrak :
White Matter Hyperintensities (WMH) adalah area di otak yang memiliki intensitas yang lebih tinggi dibandingkan dengan area normal lainnya pada hasil pemindaian Magnetic Resonance Imaging (MRI). WMH seringkali terkait dengan penyakit pembuluh kecil di otak, sehingga deteksi dini WMH sangat penting. Namun, terdapat dua masalah umum dalam mendeteksi WMH, yaitu ambiguitas yang tinggi dan kesulitan dalam mendeteksi WMH yang berukuran kecil. Dalam penelitian ini, kami mengusulkan metode yang disebut Probabilistic TransUNet untuk mengatasi masalah segmentasi objek WMH yang berukuran kecil dan ambiguitas yang tinggi pada citra medis. Kami melakukan eksperimen K-fold cross validation untuk mengukur kinerja model. Berdasarkan hasil eksperimen, model berbasis Transformer (TransUNet dan Probabilistic TransUNet) lebih baik dan presisi dalam melakukan segmentasi pada obyek WMH yang berukuran kecil, hal ini ditunjukkan oleh nilai Dice Similarity Coefficient (DSC) yang dihasilkan lebih tinggi dibandingkan dengan model berbasis Convolutional Nueral Networks (CNN) (U-Net dan Probabilistic U-Net). Penambahan probabilistic model dan pendekatan berbasis transformer berhasil mendapatkan performa yang lebih baik. Metode yang kami usulkan berhasil mendapatkan nilai DSC sebesar 0,744 dalam 5-fold cross validation, lebih baik dari metode sebelumnya. Dalam melakukan segmentasi objek kecil metode usulan kami mendapatkan nilai DSC sebesar 0,51. ......White Matter Hyperintensities (WMH) are areas of the brain that have a higher intensity than other normal brain regions on Magnetic Resonance Imaging (MRI) scans. WMH is often associated with small vessel disease in the brain, making early detection of WMH important. However, there are two common issues in detecting WMH: high ambiguity and difficulty detecting small WMH. In this study, we propose a method called Probabilistic TransUNet to address the precision of small object segmentation and the high ambiguity of medical images. We conducted a k-fold cross-validation experiment to measure model performance. Based on the experiments, Transformer-based models (TransUNet and Probabilistic TransUNet) were found to provide more precise and better segmentation results, as demonstrated by the higher DSC scores obtained compared to CNN-based models (U-Net and Probabilistic U-Net) and their ability to segment small WMH objects. The proposed method obtained a DSC score of 0742 in k-fold cross-validation, better than the previous method. In conducting segmentation of small objects, our proposed method achieved a DSC score of 0,51.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Muhammad Hirzi
Abstrak :
instance point cloud memungkinkan untuk melakukan segmentasi bentuk dari instance 3D yang berbeda pada kelas semantik yang sama. Penerapan segmentasi 3D pada pemodelan 3D area perkotaan dapat merangsang perkembangan lebih lanjut untuk menganalisis pemodelan 3D area perkotaan. Segmentasi instance 3D point cloud perkotaan memiliki tantangan tersendiri, sebagai contoh ukuran skala besar dan bentuk instance yang lebih beragam, dibandingkan 3D point cloud di dalam ruang. Penelitian ini mengajukan optimasi dari segmentasi instance 3D point cloud pada daerah perkotaan skala besar dengan optimasi metode pencacahan menggunakan metode pencacahan overlapping dan modifikasi bagian backbone Hierarchical Aggregation 3D Instance Segmentation (HAIS) dengan 3D U-Net Attention ASPP Sparse CNN (metode proposed). Eksperimen dan evaluasi dilakukan terhadap HAIS dan metode proposed. Berdasarkan hasil eksperimen, didapati penggunaan metode pencacahan ukuran 50 overlapping dan modifikasi backbone HAIS dengan 3D U-Net Attention ASPP Sparse CNN (dengan hasil evaluasi AP = 48.78, AP50 = 60.45 dan AP25 = 65.33) memiliki tren kenaikan performa lebih baik dibandingkan dengan metode baseline (dengan hasil evaluasi AP = 44.83, AP50 = 56.48 dan AP25 = 62.36). ......Instance segmentation of 3D point cloud is possible to perform the segmentation of 3D object shape and to differentiate instances on similar semantic class. Urban Area's large-scale 3D point cloud instance segmentation has its own challenges, namely large-scale instance forms and is more diverse, compared to indoor 3D point clouds. This study proposed optimization of 3D point cloud instance segmentation in largescale urban areas by enhancing the patching method by using overlapping method and modifying the HAIS backbone section with 3D U-Net Attention ASPP Sparse CNN (the proposed method). The experiments and evaluations will be carried out on HAIS model with baseline method from STPLS3D and our proposed method. Based on our experimental results, was found by using patching method 50 size overlapping and modification of the HAIS backbone with 3D U-Net Attention ASPP Sparse CNN (evaluation results of AP = 48.78, AP50 = 60.45 and AP25 = 65.33) has trend to increase the performance of HAIS method which is better than the baseline method (evaluation results AP = 44.83, AP50 = 56.48 and AP25.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizal Maulana
Abstrak :
White Matter Hyperintensities (WMHs) merupakan neuroradiological features yang dapat dilihat pada T2-FLAIR brain MRI sebagai bagian putih (hyperintensities) dan merupakan karakteristik dari small vessel disease (SVD). Informasi detail terkait WMHs (lokasi, volume, dan distribusi) sangat diperlukan untuk membantu penanganan pasien. Akan tetapi melakukan segmentasi otomatis pada WMHs merupakan tantangan tersendiri karena ukuran, bentuk, dan letak WMHs yang tidak menentu. Hasil evaluasi dapat berubah bila test set berasal dari dataset yang berbeda dari train set, karena setiap dataset akan memiliki karakteristik yang berbeda. Penelitian ini mengusulkan model bernama Probabilistic Multi-compound Transformer (Probabilistic MCTrans) yang menggantikan model U-Net pada Probabilistic U-Net menjadi model MCTrans. Secara penelitian sebelumnya, model MCTrans dapat menyelesaikan permasalahan long-range dependencies dan model Probabilistic U-Net dapat menangkap ambiguitas dari citra medis, serta akan melakukan evaluasi cross-dataset robustness untuk mengetahui performa model bila train set berbeda sumber dari test set. Dari hasil evaluasi menunjukan bahwa Probabilistic MCTrans memiliki performa yang lebih rendah dibandingkan dengan Probabilistic U-Net. Akan tetapi Probabilistic MCTrans memiliki performa lebih baik dibandingkan dengan MCTrans. Hal tersebut dapat terjadi karena ambiguitas yang ditangkap Probabilistic MCTrans lebih banyak dari Probabilistic U-Net dan ambiguitas banyak terjadi di border WMHs.  ......White Matter Hyperintensities are neuroradiological features that often seen in T2-FLAIR brain MRI as hyperintensities and characteristic of small vessel disease (SVD). Detailed information of WMHs (i.e. location, volume, and distribution) are needed in clinical research to help treat patients. However, automatic segmentation on WMHs is still challenging due to uncertain volume, shape, and location of WMHs. Evaluation results may change if test set came from different dataset as train set, because every dataset have their own characteristic. In this study, we propose a model called Probabilistic Multi-compound Transformer (Probabilistic MCTrans), that replace U-Net from Probabilistic U-Net’s with MCTrans. In previous study, model MCTrans can solved long-range dependencies problem and model Probabilistic U-Net can capture ambiguity in biomedical image, also we would like to evaluate on cross-dataset robustness to determine performance model when the train set differs in source from the test set. The evaluation results show that Probabilistic MCTrans has a lower performance than Probabilistic U-Net. However, Probabilistic MCTrans has better performance than MCTrans. Furthermore, the ambiguity captured by Probabilistic MCTrans is more than Probabilistic U-Net and the ambiguity is around the border of WMHs. 
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tiara Adinda Putri
Abstrak :
Mata merupakan salah satu bagian tubuh yang penting pada hidup manusia. Menggunakan bantuan mata, kita dapat menjalankan berbagai macam aktivitas dengan mudah. Namun, banyak sekali penyakit yang dapat menyerang mata, salah satunya adalah mata kering. Sebuah studi yang ada telah mengkonfirmasi bahwa sebagian besar pasien dengan penyakit mata kering dilaporkan mengalami disfungsi kelenjar meibom. Oleh karena itu, sangat penting untuk mengevaluasi kinerja kelenjar meibom pada pasien mata kering. Akan tetapi, pada kenyataannya hasil evaluasi kelenjar meibom oleh tenaga profesional masih sangat subjektif. Seorang dokter mata bisa memiliki pendapat mengenai tingkat kerusakan kelenjar meibom yang berbeda dengan dokter lainnya. Sehingga, alat diagnostik yang efektif diperlukan untuk mengevaluasi kelenjar meibom agar terhindar dari hasil penilaian tenaga profesional yang subjektif. Oleh sebab itu, pada penelitian ini dilakukan segmentasi kelenjar meibom dengan bantuan deep learning untuk menghindari penilaian tenaga profesional yang subjektif. Penelitian ini menggunakan arsitektur yang bernama U-Net. Data yang dimiliki berjumlah 139 citra meibography berasal dari pasien penyakit mata kering dari Rumah Rumah Sakit Cipto Mangunkusumo Departemen Kirana yang terdiri dari 35 citra meibography kelopak mata atas pada mata kanan, 34 citra meibography kelopak mata atas pada mata kiri, 35 citra meibography kelopak mata bawah pada mata kanan, dan 35 citra meibography kelopak mata bawah pada mata kiri. Kemudian citra meibography melalui tahapan anotasi untuk mendapatkan ground truth dan di resize menjadi ukuran 256 x 256. Selanjutnya data tersebut mengalami augmentasi dengan teknik rotasi dan teknik horizontal flip. Sehingga total data citra meibography menjadi 417 citra. Pada penelitian ini data citra meibography dibagi menjadi 3 bagian yaitu data training, data validation, dan data testing. Pada kasus pertama, jumlah data training adalah 80% dari citra meibography yang dimiliki, data validation sebanyak 10% citra meibography dari data training, dan data testing sebanyak 20% citra meibography yang dimiliki. Pada kasus kedua, pembagian data training dan data testing masih sama akan tetapi pembagian data validation adalah 20% dari data training. Pada kasus terakhir pembagian data training dan data testing masih sama akan tetapi pembagian data validation adalah 30% dari data training. Dengan melakukan 5 kali percobaan untuk masing-masing kasus pembagian data, didapat bahwa kasus pertama menghasilkan rata-rata akurasi 94,50% dan rata-rata Intersection over Union (IoU) 72,70%, kasus kedua menghasilkan nilai rata-rata akurasi 94,49% dan rata-rata Intersection over Union (IoU) yaitu 73,86%, dan kasus terakhir memiliki rata-rata akurasi 94,14% dan Intersection over Union (IoU) 72,15%. ......The eye is one of the essential body parts in human life. With the eye's help, we can carry out various activities easily. However, many diseases can attack the sights, including dry eyes. An existing study has confirmed that most patients with dry eye disease reported meibomian gland dysfunction. Therefore, it is crucial to evaluate the performance of the meibomian glands in dry eye patients. However, the results of the evaluation of the meibomian glands by professionals are still very subjective. An ophthalmologist may have an opinion regarding the level of meibomian gland damage that is different from other doctors. Thus, an effective diagnostic tool is needed to evaluate the meibomian glands to avoid subjective professional assessment results. Therefore, in this study, segmentation of the meibomian glands was carried out with the help of deep learning to prevent subjective professional judgments. This research uses an architecture called U-Net. The data is 139 meibographic images derived from dry eye patients from Cipto Mangunkusumo Hospital Kirana Department consisting of 35 meibographic images of the upper eyelid on the right eye, 34 meibographic images of the upper eyelid on the left eye, 35 meibographic images of the lower eyelid in the right eye, and 35 meibography images of the lower eyelid in the left eye. Then the meibography image goes through the annotation stages to get the ground truth and is resized to a size of 256 x 256. Furthermore, the data is augmented using rotation techniques and horizontal flip techniques. So, the total meibography image data becomes 417 images. In this study, meibography image data is divided into three parts: training data, validation data, and testing data. In the first case, the amount of training data is 80% of the meibography image, validation data is 10% of the meibography image from the training data, and testing data is 20% of the meibography image. In the second case, the distribution of training data and testing data is still the same, but the distribution of validation data is 20% of the training data. In the last case, the training data distribution and testing data are still the same, but the distribution of validation data is 30% of the training data. By conducting five trials for each case of data division, it was found that the first case produced an average accuracy of 94.50% and an average Intersection over Union (IoU) of 72.70%, the second case made an average accuracy value of 94.49% and the average Intersection over Union (IoU) is 73.86%, and the third case has an average accuracy of 94.14% and Intersection over Union (IoU) 72.15%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harahap, Adli Aulia Fattah
Abstrak :
Kanker kulit termasuk salah satu kanker dengan kasus terbanyak di seluruh dunia dan menjadi penyebab kematian terbanyak adalah kanker kulit melanoma. Pendeteksian dan diagnosis dini berhasil meningkatkan angka survival rate untuk melanoma tingkat awal sebesar 95%. Oleh karena itu, analisis gambar medis sangat penting dalam upaya pengobatan penyakit kulit sedini mungkin. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Adanya pengembangan teknologi deep learning dan computer vision dapat membantu dokter dalam melakukan segmentasi lesi kulit dengan lebih cepat dan akurat. Penelitian ini mengusulkan penggunaan arsitektur Recurrent Residual U-Net (R2U-Net) dalam melakukan tugas segmentasi lesi kulit. Arsitektur ini menggunakan recurrent residual block yang terinspirasi dari residual connection dan Recurrent Convolutional Layer (RCL) ke dalam arsitektur berbasis U-Net. Unit residual dengan RCL membantu mengembangkan model lebih dalam yang efisien. Dataset yang digunakan pada penelitian ini adalah dataset yang berasal dari International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam memprediksi segmentasi lesi kulit pada nilai Dice Similarity Coefficient (DSC), jaccard index, akurasi, sensitivitas, spesifisitas, dan presisi masing-masing sebesar 88,16%, 79,03%, 94,07%, 87,25%, 96,98%, dan 89,50%, dengan rata-rata kenaikan sebesar 2,4%. ......Skin cancer is one of the most common cancers in the world and the leading cause of death is melanoma. Early detection and diagnosis can increase the survival rate for early-stage melanoma by 95%. Therefore, analysis of medical images is very important in efforts to treat skin diseases as early as possible. The current detection method that uses the manual method is still less reliable and takes a lot of time. The development of deep learning technology and computer vision can assist doctors in segmenting skin lesions more quickly and accurately. This study proposes the use of the Recurrent Residual U-Net (R2U-Net) architecture in performing the task of segmenting skin lesions. This architecture uses a recurrent residual block inspired by the residual connection and recurrent convolutional layer (RCL) in a U-Net-based architecture. Residual units with RCL help develop efficient deeper models. The dataset used in this study is a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This research succeeded in improving the model's performance in predicting skin lesion segmentation on the Dice Similarity Coefficient (DSC), jaccard index, accuracy, sensitivity, specificity, and precision values of each respectively 88.16%, 79.03%, 94.07%, 87.25%, 96.98%, and 89.50%, with an average increase of 2.4%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zafir Rasyidi Taufik
Abstrak :
Coronavirus Disease 2019 (COVID-19) merupakan sebuah penyakit yang disebabkan oleh novel coronavirus SARS-CoV-2. Penyakit yang berasal dari Provinsi Hubei di China ini sudah menyebar ke seluruh dunia, menjangkiti banyak hingga seluruh negara di dunia. Sudah menginfeksi kurang lebih 400 juta jiwa di seluruh dunia pada pertengahan kuartal pertama tahun 2022. Mencegah penyebaran COVID-19 merupakan tindakan yang harus segera dilakukan, salah satu caranya adalah dengan pendeteksian sedini mungkin. Pendeteksian COVID-19 selain menggunakan metode kedokteran, dapat dipertimbangkan mengenai penggunaan artificial intelligence. Penelitian mengenai metode pendeteksian COVID-19 menggunakan citra X-Ray yang telah dilakukan oleh Dhita menuai hasil yang cukup sukses. Menambahkan penelitian tersebut, kami melakukan metode pendeteksian menggunakan citra CT Scan. Beberapa penelitian mengenai pendeteksian COVID-19 menggunakan citra CT Scan seperti Tang et al. meneliti mengenai segmentasi citra CT Scan terhadap daerah local lesi terindikasi COVID-19 atau Pneumonia. Rahimzadeh, Attar, and S. M. Sakhaei juga melakukan penelitian sebelumnya mengenai pengklasifikasian pasien COVID-19 menggunakan citra CT Scan dengan mendapatkan hasil 90% akurasi dengan menggunakan metode FPN. ......Coronavirus Disease 2019 (COVID-19) is a disease caused by the novel coronavirus SARS-CoV-2. This disease which originates from the Hubei Province in China has already spread throughout the world, reaching many if not all countries in the world. There have been more than 400 million people infected across the globe as of the first quarter of 2022. Prevention of the spreading of the disease is very important, and one of the best ways to do so is to detect its infection as soon as possible. Aside from asking a doctor, the task of detecting COVID-19 using artificial intelligence has been considered. The research done by Dhita to detect COVID-19 using X-ray images has been seen as a success. Adding to that, we attempt to detect COVID-19 using CT Scan images. A couple research papers about detecting COVID-19 using CT Scan images such as the ones done by Tang et al. tried to segment CT Scan images related to the lesions that indicate COVID-19 or Pneumonia. Rahimzadeh, Attar, and S. M. Sakhaei also conducted research related to classifying COVID-19 patients using CT Scan images and found success at 90% accuracy with an FPN model.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library