Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 33 dokumen yang sesuai dengan query
cover
Muhammad Fakhry Firdausi
Abstrak :
Tanaman padi (Oryza Sativa) telah menjadi sumber pangan pokok bagi masyarakat Indonesia selama ribuan tahun. Dengan seiring bertambahnya jumlah masyarakat di Indonesia setiap tahunnya, tentunya kebutuhan akan tanaman padi semakin meningkat. Oleh karena itu, perlu adanya pemanfaatan teknologi untuk meningkatkan produksi serta mempertahankan kualitas padi untuk mempertahankan kualitas padi untuk memenu kebutuhan pangan masyarakat Indonesia. Penyakit yang umum menyerang tanaman padi di Indonesia adalah penyakit blas (blast), hawar daun (blight) dan tungro. Dalam penelitian ini, penulis menggunakan transfer learning dengan model DenseNet201 dan ResNet-50 untuk mengklasifikasi penyakit tanaman padi pada citra daun secara akurat. Data yang digunakan dalam penelitian ini diambil dari online database yang berisi 240 citra daun tanaman padi dengan 3 penyakit yang berupa penyakit blas (blast), hawar daun (blight) dan tungro. Selanjutnya, penulis menggunakan teknik preprocessing seperti resizing dan normalization serta berbagai macam teknik augmentasi seperti rotasi, zoom dan lain-lain untuk meningkatkan kinerja model dalam mengklasifikasi penyakit tanaman padi. Hasil penelitian ini menunjukkan bahwa model DenseNet201 memiliki kinerja yang jauh lebih baik dibandingkan dengan model ResNet-50 dalam mengklasifikasi penyakit tanaman padi. Evaluasi dari kinerja model dilihat dari nilai akurasi serta running time dimana model DenseNet201 memiliki akurasi testing sebesar 93,34% dan running time pada tahap training selama 74,7083 detik. ......Rice (Oryza sativa) has been a staple food source for Indonesian people for thousands of years. With the increasing number of people in Indonesia every year, of course the need for rice plants is increasing. Therefore, it is necessary to use technology to increase production and maintain the quality of rice to maintain the quality of rice to meet the food needs of the Indonesian people. Diseases that commonly attack rice plants in Indonesia are blast, leaf blight and tungro disease. In this study, the authors used transfer learning with DenseNet201 and ResNet-50 models to classify rice plant diseases on leaf images accurately. The data used in this study were taken from an online database containing 240 images of rice leaves with 3 diseases, namely blast, blight and tungro. Furthermore, the authors use preprocessing techniques such as resizing and normalization as well as various kinds of augmentation techniques such as rotation, zoom and others to improve the performance of the model in classifying rice plant diseases. The results of this study indicate that the DenseNet201 model has a much better performance than the ResNet-50 model in classifying rice plant diseases. Evaluation of the model's performance is seen from the accuracy value and running time where the DenseNet201 model has a testing accuracy of 93.34% and the running time at the training stage is 74.7083 seconds.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sugiri
Abstrak :
Sebagian besar studi terbaru dalam abstractive summarization melakukan pendekatan dengan melakukan fine-tuning pretrained language generation model (PLGM). PLGM yang digunakan biasanya merupakan versi monolingual, yang hanya memiliki informasi bahasa yang sesuai dengan dataset yang digunakan. Penelitian ini menggunakan PLGM berbasis multilingual, yang menghasilkan kinerja yang cukup kompetitif jika dibandingkan dengan solusi state-of-the-art yang ada. Dengan menggunakan PLGM berbasis multilingual manfaat yang dihasilkan akan berdampak lebih luas sebanyak informasi bahasa yang dimiliki oleh PLGM terkait. Teknik CTRLSum, yaitu penambahan keyphrase di awal source document, terbukti dapat membuat PLGM menghasilkan summary sesuai dengan keyphrase yang disertakan. Penelitian ini menggunakan teknik mCTRLSum, yaitu teknik CTRLSum dengan menggunakan multilingual PLGM. Untuk mendapatkan keyphrase, selain dengan menggunakan teknik keyphrase extraction (KPE) yang memilih kata yang ada di source document, juga digunakan teknik keyphrase generation (KPG) yaitu teknik pembangkitan suatu set kata/frasa berdasarkan suatu source document dataset berbahasa Inggris, tidak hanya dilatih menggunakan oracle keyphrase sebagai pseudo-target dari dataset summarization, model KPG juga dilatih menggunakan dataset khusus permasalahan KPG dengan domain dan bahasa yang sama. Dengan teknik mCTRLSum yang memanfaatkan oracle keyphrase,  penelitian ini mendeklarasikan batas atas solusi permasalahan abstractive summarization pada dataset Liputan6, dan XLSum berbahasa Inggris, Indonesia, Spanyol, dan Perancis dengan peningkatan terbesar pada dataset Liputan6 sebanyak 22.54 skor ROUGE-1, 18.36 skor ROUGE-2, 15.81 skor ROUGE-L, dan 7.16 skor BERTScore, dan rata-rata 9.36 skor ROUGE-1, 6.47 skor ROUGE-2, 6.68 skor ROUGE-L dan 3.14 BERTScore pada dataset XLSum yang digunakan pada penelitian ini. ......Most of the recent studies in abstractive summarization approach by fine-tuning the pre-trained language generation model (PLGM). PLGM used is usually a monolingual version, which only has language information that corresponds to the dataset used. This study uses amultilingual-basedd PLGM, which results in quite competitive performance, compared to existing state-of-the-art solutions. Using a PLGM based on the multilingual benefits generated, it will have a wider impact as much as the language information base owned by the related PLGM. The CTRLSum technique, which is the addition of a keyphrase at the beginning of the source document, is proven to be able to make PLGM produce a summary according to the included keyphrase. This study uses the mCTRLsum technique, namely the CTRLsum technique using multilingual PLGM. To get thekey phrasee, in addition to using the keyphrase extraction (KPE) technique, the words in the source document, keyphrase generation (KPG) techniques are also used, namely the technique of generating a set of words/phrases based on a source document. On the English dataset, not only using the oracle keyphrase as the pseudo-target of the dataset summariza buttion, the KPG model also uses the dataset specifically for KPG problems with the same domain and language. With the mCTRLsum technique that utilizes the oracle keyphrase, this study declares the upper bound of the solution to the abstractive summarization problem in the Liputan6 and XLSum in English, Indonesian, Spanish, and French datasets with the highest increase in Liputan6 dataset of 22.54 ROUGE-1 score, 18.36 ROUGE-2 score, 15.81 ROUGE-L score, and 7.16 BERTScore, and in average of 9.36 ROUGE-1 score, 6.47 ROUGE-2 score, 6.68 ROUGE-L score, and 3.14 BERTScore on XLSum dataset used in this research.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Hilmizen
Abstrak :
Pada awal pandemi COVID-19, keputusan medis pada pasien ditentukan oleh dokter berdasarkan banyak tes medis (misalnya, tes reaksi berantai polimerase, tes suhu, CTScan atau X-ray). Metode transfer learning telah digunakan dalam beberapa penelitian dan berfokus hanya pada satu biomarker (misalnya, hanya CT-Scan atau X-Ray saja) untuk mendiagnosis pneumonia. Dalam studi terbaru, modalitas tunggal memiliki keakuratan klasifikasi sendiri dan setiap biomarker yang berbeda dapat memberikan informasi pelengkap untuk mendiagnosis COVID-19 pneumonia. Tujuan pada penelitian ini adalah membangun model multimodal yaitu dengan menggabungkan dua masukan (input) menjadi satu keluaran (output) pada tahapan pembuatan model. Dua model transfer learning yang berbeda telah digunakan pada masing-masing masukan dengan dataset open-source 2849 gambar CT-Scan dan 2849 gambar X-ray untuk mengklasifikasikan gambar CT-Scan dan gambar X-ray menjadi dua kelas: normal dan COVID-19 pneumonia. Model transfer learning yang digunakan adalah model DenseNet121, model MobileNet, model Xception, model InceptionV3, model ResNet50 dan model VGG16 untuk proses ekstraksi fitur. Alhasil, akurasi klasifikasi terbaik didapatkan sebesar 99,87% saat penggabungan jaringan ResNet50 dan VGG16. Kemudian, akurasi klasifikasi terbaik didapatkan sebesar 98,00% saat menggunakan modalitas tunggal model ResNet50 dengan data CT-Scan dan akurasi klasifikasi sebesar 98,93% untuk model VGG16 dengan data X-Ray. Metode penggabungan multimodal learning menunjukkan akurasi klasifikasi yang lebih baik dibandingkan dengan metode yang menggunakan hanya satu modalitas saja. ......Due to COVID-19 Pandemic, medical decisions on patients were made by doctors based on many medical tests (e.g., polymerase chain reaction test, temperature test, CT-Scan or X-ray). Transfer learning methods have been used in several studies and focus on only one biomarker (eg, CT-Scan or X-Ray only) for diagnosing pneumonia. In recent studies, a single modality has its own classification accuracy and each different biomarker can provide complementary information for diagnosing COVID-19 pneumonia. The purpose of this research is to build a multimodal model by combining two inputs (inputs) into one output (output) at the modeling stage. Two different transfer learning models were used at each input with an open-source dataset of 2849 CT-Scan images and 2849 X-ray images to classify CT-Scan images and X-ray images into two classes: normal and COVID-19 pneumonia. . The transfer learning model used is the DenseNet121 model, the MobileNet model, the Xception model, the InceptionV3 model, the ResNet50 model and the VGG16 model for the feature extraction process. As a result, the best classification accuracy was obtained at 99.87% when merging the ResNet50 and VGG16 networks. Then, the best classification accuracy was obtained at 98.00% when using a single modality ResNet50 model with CT-Scan data and a classification accuracy of 98.93% for the VGG16 model with X-Ray data. The multimodal learning combination method shows better classification accuracy than the method that uses only one modality.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gabriel Enrique
Abstrak :
Part-of-speech tagging, adalah task di bidang Natural Language Processing di mana setiap kata di dalam suatu kalimat dikategorisasi ke dalam kategori parts-of-speech (kelas kata) yang sesuai. Pengembangan model POS tagger menggunakan pendekatan machine learning membutuhkan dataset dengan ukuran yang besar. Namun, dataset POS tagging tidak selalu tersedia dalam jumlah banyak, seperti dataset POS tagging untuk bahasa Jawa. Dengan jumlah data yang sedikit, model POS tagger yang dilatih kemungkinan tidak akan memiliki performa yang optimal. Salah satu solusinya adalah dengan menggunakan pendekatan cross-lingual transfer learning, di mana model dilatih menggunakan suatu source language pada suatu task agar dapat menyelesaikan task yang sama pada suatu target language. Penelitian ini bertujuan untuk menguji performa pre-trained language model (mBERT, XLM-RoBERTa, IndoBERT) dan melihat pengaruh cross-lingual transfer learning terhadap performa pre-trained language model untuk POS tagging bahasa Jawa. Percobaan yang dilakukan menggunakan lima source language, yaitu bahasa Indonesia, bahasa Inggris, bahasa Uighur, bahasa Latin, dan bahasa Hungaria, serta lima jenis model, yaitu fastText + LSTM, fastText + BiLSTM, mBERT, XLM-RoBERTa, dan IndoBERT; sehingga secara keseluruhan ada total 35 jenis model POS tagger. Model terbaik yang dilatih tanpa pendekatan cross-lingual transfer learning dibangun menggunakan IndoBERT, dengan akurasi sebesar 86.22%. Sedangkan, model terbaik yang dilatih menggunakan pendekatan cross-lingual transfer learning dalam bentuk dua kali fine-tuning, pertama menggunakan source language dan kedua menggunakan bahasa Jawa, sekaligus model terbaik secara keseluruhan dibangun menggunakan XLM-RoBERTa dan bahasa Indonesia sebagai source language, dengan akurasi sebesar 87.65%. Penelitian ini menunjukkan bahwa pendektan cross-lingual transfer learning dalam bentuk dua kali fine-tuning dapat meningkatkan performa model POS tagger bahasa Jawa, dengan peningkatan akurasi sebesar 0.21%–3.95%. ...... Part-of-speech tagging is a task in the Natural Language Processing field where each word in a sentence is categorized into its respective parts-of-speech categories. The development of POS tagger models using machine learning approaches requires a large dataset. However, POS tagging datasets are not always available in large quantities, such as the POS tagging dataset for Javanese. With a low amount of data, the trained POS tagger model may not have optimal performance. One of the solution to this problem is using the cross-lingual transfer learning approach, where a model is trained using a source language for a task so that it can complete the same task on a target language. This research aims to test the performance of pre-trained language models (mBERT, XLM-RoBERTa, IndoBERT) and to see the effects of cross-lingual transfer learning on the performance of pre-trained language models for Javanese POS tagging. The experiment uses five source languages, which are Indonesian, English, Uyghur, Latin, and Hungarian, as well as five models, which are fastText + LSTM, fastText + BiLSTM, mBERT, XLM-RoBERTa, and IndoBERT; hence there are 35 POS tagger models in total. The best model that was trained without cross-lingual transfer learning approach uses IndoBERT, with an accuracy of 86.22%. While the best model that was trained using a cross-lingual transfer learning approach, implemented using a two fine-tuning process, first using the source language and second using Javanese, as well as the best model overall uses XLM-RoBERTa and Indonesian as the source language, with an accuracy of 87.65%. This research shows that the cross-lingual transfer learning approach, implemented using the two fine-tuning process, can increase the performance of Javanese POS tagger models, with a 0.21%–3.95% increase in accuracy.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadya Novalina
Abstrak :
COVID-19 adalah penyakit infeksi menular yang disebabkan oleh virus SARS-CoV-2 dan dapat menyebabkan gangguan pada sistem pernapasan. Pencitraan X-Ray dapat menjadi alternatif dalam mendeteksi COVID-19 karena mampu menggambarkan kondisi paru-paru pasien. Deep learning dapat digunakan untuk menganalisis pola pada citra medis secara otomatis. Untuk itu, digunakan Convolutional Neural Network dengan teknik transfer learning menggunakan arsitektur Xception, EfficientNetB3, dan ensemble dari kedua model secara paralel untuk deteksi COVID-19 dan tingkat keparahannya dari citra X-Ray dada secara otomatis. Klasifikasi COVID-19 dilakukan untuk empat jenis kelas, yaitu: positif COVID-19, normal, pneumonia bakteri dan pneumonia virus. Pada klasifikasi COVID-19, ketiga model classifier yang diusulkan mencapai akurasi keseluruhan untuk semua kelas sebesar 94,44% untuk classifier Xception, 95,28% untuk classifier EfficientNetB3, dan 94,44% untuk classifier paralel. Nilai akurasi tersebut lebih tinggi dari nilai akurasi classifier lain. Klasifikasi tingkat keparahan COVID-19 dilakukan untuk tiga jenis kelas yaitu: ringan, sedang, dan parah. Pada klasifikasi tingkat keparahan COVID-19, ketiga model classifier yang diusulkan mencapai akurasi keseluruhan untuk semua kelas sebesar 70,00% untuk classifier Xception, 67,50% untuk classifier EfficientNetB3 dan paralel. Nilai akurasi tersebut lebih tinggi dari nilai akurasi classifier lain. Secara keseluruhan, ketiga classifier yang diusulkan dapat direkomendasikan sebagai alat yang dapat membantu ahli radiologi dan praktisi klinis dalam diagnosis dan tindak lanjut kasus COVID-19. ......COVID-19 is a contagious infectious disease caused by the SARS-CoV-2 virus and can cause disorders of the respiratory system. X-Ray imaging can be an alternative in detecting COVID-19 because it is able to describe the condition of the patient's lungs. Deep learning can be used to analyze patterns in medical images automatically. For this reason, Convolutional Neural Network is used with transfer learning techniques using Xception, EfficientNetB3 architecture, and an ensemble of both models in parallel for the detection of COVID-19 and its severity level from Chest X-Ray images automatically. The classification of COVID-19 is carried out for four types of classes, namely: positive COVID-19, normal, bacterial pneumonia, and viral pneumonia. In the COVID-19 classification, the three proposed classifier models achieve overall accuracy for all classes of 94.44% for the Xception classifier, 95.28% for the EfficientNetB3 classifier, and 94.44% for the parallel classifier. The accuracy value is higher than the other classifier accuracy values. The classification of the severity level of COVID-19 is carried out for three types of classes, namely: mild, moderate, and severe. In the classification of the severity level of COVID-19, the three proposed classifier models achieve overall accuracy for all classes of 70.00% for the Xception classifier, 67.50% for the EfficientNetB3 classifier and parallel. The accuracy value is higher than the other classifier accuracy values. Overall, the three proposed classifiers can be recommended as tools that can assist radiologists and clinical practitioners in the diagnosis and follow-up of COVID-19 cases.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Merlin Wijaya
Abstrak :
Penyakit glaukoma ditandai dengan hilangnya serabut saraf optik dan astrosit. Kehilangan ini dapat diperiksa dengan mengukur ketebalan neuro-retinal rim dan ukuran optic cup sehubungan dengan optic disc. Namun, penentuan glaukoma masih membutuhkan pemeriksaan mata lengkap oleh dokter mata. Beberapa metodologi otomatis berdasarkan transfer learning deep convolutional neural network untuk klasifikasi glaukoma telah dikembangkan. Untuk meningkatkan akurasi dari penelitian sebelumnya, digunakan metode transfer learning dari metode klasifikasi skin cancer. Arsitektur Inception-v3 dan ResNet50 serta pengklasifikasi serial dari kedua arsitektur tersebut dikembangkan untuk klasifikasi glaukoma otomatis menggunakan citra fundus. Selain arsitektur, variasi splitting dataset dengan metode train-test-split validation serta k-fold cross validation dibandingkan untuk mendapatkan nilai akurasi tertinggi. Berdasarkan hasil penelitian, model terbaik yang didapatkan berupa Inception-v3 dengan metode validasi train-valid-test rasio 80:20 dengan akurasi 95%, presisi 96%, sensitivitas 95%, dan skor-f1 95%. Pembagian 80:20 dipilih karena cocok dengan ukuran dataset yang digunakan. Performa model ini lebih baik dari metode yang telah ada sebelumnya, yaitu Xception dengan peningkatan akurasi sebanyak 2%. ......Glaucoma is characterized by loss of optic nerve fibers and astrocytes. This loss can be checked by measuring the thickness of the neuro-retinal rim and the size of the optic cup in relation to the optic disc. However, the determination of glaucoma still requires a complete eye examination by an ophthalmologist. Several automated methodologies based on transfer learning deep convolutional neural networks for glaucoma classification have been developed. To increase the accuracy of previous research, transfer learning method is used from the skin cancer classification method. The Inception-v3 and ResNet50 architectures also the serial classifiers of the two architectures were developed for automatic glaucoma classification using fundus images. In addition to the architecture, variations of splitting datasets using the train-test-split validation method and k-fold cross validation were compared to get the highest accuracy value. Based on the results of the study, the best model obtained was Inception-v3 with a train-valid-test ratio validation method of 80:20 with 95% accuracy, 96% precision, 95% sensitivity, and 95% f1-score. The 80:20 division was chosen because it matches the size of the dataset used. The performance of this model is better than the previous method, namely Xception with an increase in accuracy of 2%.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Jabbar Rosul
Abstrak :
Kelenjar Meibom atau Meibomian Gland (MG) adalah salah satu elemen dari mata, letaknya berada pada kelopak mata. Kelenjar meibom berperan untuk mensekresikan komponen minyak sehingga mencegah sindrom mata kering. Kelainan dan perubahan ukuran dari kelenjar meibom menyebabkan kerusakan MG yang disebut dengan meibomian gland dysfunction (MGD). Kerusakan pada kelenjar meibom dapat dideteksi dengan citra yang dinamakan meibography. Kerusakan pada kelenjar meibom memiliki beberapa tingkatan yang disebut dengan meiboscore. Namun pada kenyataanya di dunia kedokteran masih subjektif untuk menentukan meiboscore tingkat keparahan disfungsi kelenjar meibom. Dalam menjawab permasalahan tersebut, metode segmentasi citra meibography dengan AI (Artificial intelligence) dapat menjadi metode klinis yang efektif untuk mengevaluasi kerusakan bentuk kelenjar meibom untuk tindakan dan diagnosa medis lebih lanjut. Penelitian ini menggunakan pendekatan machine learning khususnya deep learning yaitu metode Fully Convolutional Network (FCN) dengan menggunakan transfer learning VGG16, dengan variasi upsampling FCN-8. Data yang digunakan pada penelitian kali ini merupakan data sekunder citra meibography yang berasal dari pasien Rumah Sakit Cipto Mangunkusumo departemen RSCM-KIRANA. Pertama-tama untuk mendapatkan ground truth, maka dilakukan anotasi pada data citra dengan supervisi dari dokter. Sebelum dilakukan percobaan pada model, citra meibography akan dilakukan tahap pre-processing dengan menggunakan resize dan augmentasi data, serta one-hot encoding untuk ground truth. Eksperimen dilakukan dengan 5 kali percobaan running model pada data training dan data testing. Untuk hasil kinerja training model, dari eksperimen menunjukan bahwa training loss rata-rata yang didapat adalah 11,37% dan memperoleh rata-rata pixel accuracy sebesar 95,19%. Sementara untuk evaluasi kinerja model pada data validasi dapat diperoleh bahwa validation loss rata-rata adalah 31,776% dan memperoleh rata-rata validation pixel accuracy sebesar 91,404%. Selanjutnya untuk hasil kinerja pada data testing, diperoleh rata-rata testing loss adalah 20,88%, dan rata-rata testing pixel accuracy sebesar 92,91%. Disamping itu, diperoleh pula untuk rata-rata mean-IoU dari 5 kali percobaan adalah 71.966%. ......Meibomian gland dysfunction (MGD) is a chronic disorder of the meibomian glands, usually with morphological changes in the secretory glands. Meibography images can detect meibomian gland dysfunction. However, in the medical world, it is still subjective to determine the severity of meibomian gland dysfunction. In answering these problems, the meibography image segmentation method with AI (Artificial intelligence) can be an effective clinical method to evaluate the morphology of the meibomian glands for further medical treatment and diagnosis. This research uses a machine learning approach, especially deep learning, namely the Fully Convolutional Network (FCN) method using transfer learning VGG16, with upsampling variations of FCN-8. The data used in this study is secondary meibography image from patients at one of the hospitals in Indonesia. The meibography image is first annotated by an ophthalmologist to get the ground truth. Subsequently, data augmentation techniques, including rotation and flipping, are applied to expand the dataset. Images are then preprocessed by resizing to 224 x 224 pixels. Moreover, the annotated data is also pre-processed using one-hot encoding. The dataset was divided into three cases, with five trials of the model training conducted for each case. A 10% data validation split from the training data was allocated for the first case, a 20% data validation split from the training data for the second case, and a 30% data validation split from the training data for the third case. Based on the testing evaluation results, the experiment reveals that Case 1 outperformed Cases 2 and 3, achieving an average pixel accuracy of 92.42%, a mean-IoU of 68.50%, and mean Dice coefficient of 81.30%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika Syskya Wydya
Abstrak :
Analisis sentimen merupakan proses memahami, mengekstrak dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada media sosial, yaitu Twitter. Pada dasarnya analisis sentimen merupakan masalah klasifikasi. Support Vector Machine SVM adalah salah satu metode machine learning untuk menyelesaikan masalah klasifikasi. Pada pendekatan SVM model dibangun dengan data dari domain yang sama. Namun, ketika terjadi perubahan domain, maka model machine learning harus dibangun kembali dari awal dengan menggunakan data pelatihan yang baru. Data pelatihan yang baru membutuhkan proses pelabelan yang dilakukan secara manual. Dalam kasus ini, akan lebih efektif dan efisien jika dilakukan transfer learning agar dapat menggunakan data pelatihan dari domain yang sudah tersedia untuk menangani masalah klasifikasi pada domain yang berbeda. Data pelatihan dari sebuah domain digunakan untuk melakukan klasifikasi pada domain yang berbeda. Dalam penelitian masalah analisis sentimen untuk tweets berbahasa Indonesia ini, nilai akurasi transfer learning masih lebih rendah dari pada metode SVM tanpa transfer learning. Penggunaan fitur bi-gram dapat meningkatkan kinerja transfer learning.
Sentiment analysis is the process of understanding, extracting and processing textual data automatically to obtain information. In this experiment, sentiment analysis applied to social media, Twitter. Basically, sentiment analysis is a classification problem. Support Vector Machine SVM is one of machine learning method to solve two class classification problem. In the SVM approach the model is built with data from the same domain. However, when domain changes occur, the machine learning model must be rebuilt from scratch using new training data. New training data requires manual labeling process. In this case, it would be more effective and efficient to transfer learning to use the training data from an already available domain to deal with classification problems on different domains. Training data from a domain will be used to classify on different domains. In the research problem of sentiment analysis for tweets in Bahasa, the value of transfer learning accuracy is still lower than the SVM method without transfer learning. Use of bi gram feature can improve the performance of transfer learning.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47815
UI - Tesis Membership  Universitas Indonesia Library
cover
Endang Tri Hastuti
Abstrak :
Coronavirus Disease 2019 (COVID-19) pertama kali diidentifikasi di Wuhan, Thiongkok pada akhir Desember 2019. COVID-19 disebabkan oleh coronavirus baru yaitu The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Sejak 11 Maret 2020, WHO secara resmi menyatakan pandemi COVID-19. COVID-19 ini menginfeksi saluran pernapasan manusia yaitu sel epitel alveolus paru-paru yang menyebabkan pneumonia. Dengan bantuan metode dari Deep learning yaitu Convolutional Neural Network (CNN) dapat digunakan dalam mendeteksi kasus COVID-19 melalui tanda-tanda pneumonia pada data citra Chest X-ray. Deteksi dini kasus COVID-19 sangat diperlukan sebagai langkah meminimalkan penularan dan mengurangi resiko kematian pasien. Oleh karena itu, penelitian ini membangun metode CNN transfer learning model DenseNet121, MobileNet dan ResNet50 dengan pendekatan pseudo-colouring (RGB) dalam mengklasifikasi kasus COVID-19 ke dalam tiga kelas yaitu: COVID-19 pneumonia, sehat dan viral pneumonia. Pendekatan pseudo-colouring (RGB) dilakukan pada tahap praproses dengan memanipulasi warna pada data citra Chest X-ray sebagai sarana untuk membantu meningkatkan hasil akurasi, presisi dan sensitivitas. Hasil evaluasi pada terbaik terdapat pada model DenseNet121 menunjukkan peningkatan akurasi total 99%, presisi total 99% dan sensitivitas total 99%. Pada model MobileNet menunjukkan peningkatan pada akurasi total 97%, presisi total 97% dan sensitivitas total 95% dan pada model ResNet50 menunjukkan peningkatan pada akurasi total 97%, presisi total 98% dan sensitivitas total 94%. ......Coronavirus Disease 2019 (COVID-19) was first identified in Wuhan, China at the end of December 2019. COVID-19 is caused by a new coronavirus, namely The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since March 11, 2020, WHO has officially declared a COVID-19 pandemic. This COVID-19 infects the human respiratory tract, namely the alveolar epithelial cells of the lungs which causes pneumonia. With the help of methods from Deep learning, the Convolutional Neural Network (CNN) can be used to detect cases of COVID-19 through signs of pneumonia in Chest X-ray image data. Early detection of COVID-19 cases is important to minimize transmission and reduce the risk of patient death. Therefore, this study builds the CNN transfer learning model DenseNet121, MobileNet and ResNet50 with a pseudo-coloring (RGB) approach in classifying COVID-19 cases into three classes, namely: COVID-19 pneumonia, healthy and viral pneumonia. The pseudo-coloring (RGB) approach at the preprocessing stage by manipulating the colors in the Chest X-ray image data as a means to help improve accuracy, precision and sensitivity results. The evaluation results on the DenseNet121 model showed an increase in total accuracy of 99%, total precision of 99% and total sensitivity of 99%. The MobileNet model showed an increase in total accuracy of 97% , total precision of 97% and total sensitivity of 95% and the ResNet50 model showed an increase in total accuracy of 97%, total precision of 98% and total sensitivity of 94%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nur Rachmawati
Abstrak :
Metadata statistik memiliki peran yang sangat penting bagi masyarakat. Dengan adanya metadata statistik, kita dapat mengetahui segala informasi mengenai semua kegiatan statistik yang dilakukan. Pada penelitian ini kami akan membangun sistem Closed Domain Question Answering (CDQA) mengenai metadata statistik (CDQA-Metadata Statistik). Sistem ini dibangun dengan menggunakan metode transfer learning pada data human question dan automatic question. Penggunaan metode transfer learning digunakan karena benchmark yang besar mengenai metadata statistik belum ada sama sekali. Pada penelitian ini kami akan menggunakan arsitektur retriever(BM25)-reader(IndoBERT) berbasis transfer learning. Ada tiga eksperimen utama yang kami lakukan. Hasil eksperimen pertama kami menunjukkan bahwa pada data human question model twostage fine-tuning (human) yang merupakan model dengan metode transfer learning secara statistik sangat signifikan mengguguli model non transfer learning dengan peningkatan exact match sebesar 53 kali lipat dan f1-score sebesar 9 kali lipat. Kemudian pada data automatic question, model two-stage fine-tuning (automatic) yang merupakan model dengan metode transfer learning secara statistik signifikan mengguguli model non transfer learning dengan peningkatan 80 kali lipat untuk exact match dan 13 kali lipat untuk f1-score. Hasil eksperimen kedua kami menujukkan bahwa sistem CDQAMetadata Statistik berbasis transfer learning secara statistik signifikan lebih baik pada data automatic question dibandingkan data human question. Hal ini mungkin disebabkan pada data automatic question memiliki term-of overlap yang lebih banyak dibandingkan data human question. Lalu pada hasil eksperimen ketiga menunjukkan bahwa pada data human question, penambahan data automatic question saat fine-tuning tidak dapat meningkatkan performa CDQA-Metadata Statistik. Begitu juga pada data automatic question, penambahan data human question saat fine-tuning ternyata tidak dapat meningkatkan performa CDQA-Metadata Statistik. ......Statistical metadata plays a very important role in society. With statistical metadata, we can find out all the information regarding all statistical activities carried out. In this research we will build a Closed Domain Question Answering system (CDQA) regarding statistical metadata (CDQA-Statistical Metadata). This system was built using the transfer learning method on human question and automatic question data. The use of the transfer learning method is used because large benchmarks regarding statistical metadata do not yet exist. In this research we will use a retriever (BM25)-reader (IndoBERT) architecture based on transfer learning. There were three main experiments we conducted. The results of our first experiment show that in human question data the two-stage fine-tuning (human) model, which is a model using the transfer learning method, is statistically very significantly superior to the non-transfer learning model with an increase in exact match of 53 times and f1-score of 9 times. Then in the automatic question data, the two-stage fine-tuning (automatic) model, which is a model using the transfer learning method, statistically significantly outperforms the non-transfer learning model with an increase of 80 times for exact match and 13 times for f1-score. The results of our second experiment show that CDQA-Metadata Statistik system based on transfer learning significantly as statistics get better performance in automatic question data than in human question data. This is because automatic question data have more term-of overlap than human question data. Then the results of the third experiment show that for human question data, the addition of the automatic question data during fine-tuning cannot improve the performance of CDQA-Metadata Statistics. Likewise for automatic question data, the addition of a human question data during fine-tuning apparently did not improve the performance of CDQA-Metadata Statistics.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4   >>