Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Prita Amelia
Abstrak :
Amonia merupakan senyawa penting bagi kehidupan di bumi, diantaranya yaitu dalam bidang industri dan pertanian. Permintaan amonia diperkirakan akan meningkat setiap tahunnya. Secara konvensional, fiksasi industri dari N2 untuk menghasilkan NH3 dilakukan melalui proses Haber−Bosch yang membutuhkan kondisi suhu dan tekanan yang sangat ekstrim sehingga mengonsumsi energi dalam jumlah tinggi dan mengemisikan CO2 dalam jumlah yang sangat besar. Oleh karena itu, perlu mengembangkan teknologi alternatif untuk sintesis amonia dengan metode yang ramah lingkungan. Banyak penelitian yang mengembangkan konversi nitrogen menjadi amonia secara fotoelektrokimia dengan adanya material semikonduktor, namun efisiensi yang dihasilkan masih belum cukup baik, sehingga perlu untuk dikembangkan lebih lanjut. Pada penelitian ini dilakukan pengembangan sistem tandem Dye Sensitized Solar Cell-Photoelectrochemistry (DSSC-PEC) untuk konversi nitrogen menjadi amonia. Sel DSSC disusun menggunakan fotoanoda N719/TiO2NTs, elektrolit I-/I3-, dan katoda Pt/FTO. Efisiensi DSSC yang dihasilkan pada penelitian ini sebesar 1,49%. Sel PEC disusun menggunakan BiOBr/TiO2NTs yang disintesis dengan metode successive ionic layer adsorption and reaction (SILAR) sebagai katoda, tempat berlangsungnya reaksi konversi nitrogen menjadi amonia, dan Ti3+/TiO2NTs sebagai fotoanoda tempat berlangsungnya oksidasi air. Selain itu, pada penelitian ini juga dilakukan variasi ketika Ti3+/TiO2NTs digunakan sebagai fotoanoda dan BiOBr/TiO2NTs sebagai katoda beserta BiOBr/TiO2NTs sebagai fotoanoda dan katoda. Sistem tandem disusun dengan menghubungkan anoda PEC dengan katoda DSSC, serta katoda PEC dengan anoda DSSC menggunakan kawat tembaga. Kadar amonia yang dihasilkan dianalisis dengan menggunakan metode fenat. Pada penelitian ini diperoleh kadar amonia tertinggi dengan sistem yang menggunakan material BiOBr/TiO2NTs pada anoda dan katoda dengan kadar amonia yang dihasilkan sebesar 0,1272 µmol selama 6 jam, dengan persen solar to chemical conversion (SCC) sebesar 0,0021%. ......Ammonia is an important compound for human’s life, including in industry and agriculture. The demand for ammonia is expected to increase every year. Conventionally, the industrial fixation of N2 to NH3 is carried out through the Haber−Bosch process which requires extreme conditions of temperature and pressure. This process consumes a high amount of energy and emits a very large amount of CO2. Therefore, it is necessary to develop alternative technologies for ammonia synthesis using environmentally friendly methods. Many studies have developed the photoelectrochemical conversion of nitrogen to ammonia in the presence of semiconductor materials, but the resulting efficiency is still not good enough, so it needs further development. In this research, the development of the tandem system of Dye Sensitized Solar Cell-Photoelectrochemistry (DSSC-PEC) was carried out for the conversion of nitrogen to ammonia. DSSC cells were prepared using N719/TiO2NTs photoanode, I-/I3- electrolyte, and Pt/FTO cathode. The DSSC efficiency produced in this research is 1.49%. PEC cells were prepared using BiOBr/TiO2NTs synthesized by the successive ionic layer adsorption and reaction (SILAR) method as the cathode, where the reaction of converting nitrogen into ammonia takes place, and Ti3+/TiO2NTs as the photoanode where water oxidation takes place. In addition, in this study we also did the various experiments when Ti3+/TiO2NTs were used as photoanode and BiOBr/TiO2NTs as cathode, as well as BiOBr/TiO2NTs as photoanode and cathode. The tandem system is arranged by connecting the PEC anode to the DSSC cathode and the PEC cathode to the DSSC anode using copper wire. The resulting ammonia levels were analyzed using the phenate method. In this study, the highest ammonia levels were obtained with a system using BiOBr/TiO2NTs material at the anode and cathode with the resulting ammonia of 0.1272 µmol for 6 hours, with an solar to chemical (SCC) value of 0.0021%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suharyadi
Abstrak :
Amonia merupakan senyawa kimia yang disintesis melalui proses Haber-Bosch yang dapat menghasilkan emisi gas CO2 dalam jumlah besar karena dilakukan pada suhu dan tekanan tinggi, sehingga diperlukan teknologi alternatif untuk mensintesis amonia dengan menggunakan energi yang lebih rendah dan ramah lingkungan. Pada penelitian ini dilakukan pengembangan sistem tandem Sel Surya Tersensitisasi Zat Warna Fotoelektrokimia (DSSC-PEC) untuk reaksi reduksi nitrogen (NRR) menjadi amonia. Sel PEC menggunakan TiO2NT/BiVO4 sebagai fotoanoda untuk oksidasi air yang disintesis dengan metode optimasi SILAR selama 20 siklus memberikan photocurrent sebesar 0,352 mA/cm2. Sebagai katoda tempat berlangsungnya reaksi reduksi nitrogen menjadi amonia, digunakan Ti3+/TiO2NT. Sistem PEC digabungkan dengan DSSC berbasis TiO2NT/N719 dengan efisiensi 1,13% sebagai penambah energi dalam reaksi. Menggunakan sistem ini dengan luas area elektroda masing-masing 3 cm2, amonia yang dihasilkan dianalisis dengan menggunakan metode fenat didapatkan sebesar 0,393 µmol dengan efisiensi Solar to Chemical Conversion (SCC) sebesar 0,003%. ......Ammonia is a chemical compound that is synthesized through the Haber-Bosch process which can produce large amounts of CO2 gas emissions because it is carried out at high temperatures and pressures, so an alternative technology is needed to synthesize ammonia that uses less energy and is environmentally friendly. In this research, the development of a Dye-Sensitized Solar Cell Photoelectrochemical tandem system (DSSC-PEC) was carried out for the nitrogen reduction reaction (NRR) into ammonia. PEC cells using TiO2NT/BiVO4 as a photoanode for water oxidation synthesized by the SILAR optimization method for 20 cycles gave a photocurrent of 0.352 mA/cm2. As the cathode where the nitrogen reduction reaction to ammonia takes place, Ti3+/TiO2NT is used. The PEC system is coupled with a DSSC based on TiO2NT/N719 with an efficiency of 1.13% as an energy booster in the reaction. Using this system with an electrode area of 3 cm2, the ammonia produced was analyzed using the phenate method and obtained 0.393 µmol with a Solar to Chemical Conversion (SCC) efficiency of 0.003%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tissa Nandaris Yuwono
Abstrak :
Sel surya berbasis lapisan tipis Cu2ZnSnS4 (CZTS) dianggap sebagai material alternatif yang menjanjikan dikarenakan mengandung bahan yang ketersediaannya berlimpah di bumi. Untuk mewujudkan sel surya dengan biaya yang terjangkau, metode SILAR dipilih karena kesederhanaannya untuk proses pembuatan lapisan tipis CZTS. Penelitian ini dilakukan untuk mengetahui pengaruh perubahan waktu pencelupan anionik terhadap sifat optis lapisan tipis CZTS berupa nilai energi celah. Dengan hanya menggunakan siklus sebanyak 30, digunakan variabel waktu pencelupan anionik yang lebih lama yaitu 30, 40, 50, dan 60 detik pada sampel yang mengalami dua perlakuan anil, yaitu anil tanpa sulfur dan anil dengan suasana sulfur. Pada sampel anil tanpa sulfur didapatkan nilai energi celah menurun hingga pencelupan 40 detik, setelah itu meningkat, dan menurun kembali saat pencelupan 60 detik. Sedangkan pada sampel anil dengan sulfur nilai energic celah menurun hingga pencelupan 50 detik kemudian meningkat saat pencelupan 60 detik. Dengan meningkatnya waktu pencelupan anionik maka nilai energi celah yang diperoleh akan semakin rendah dengan tingkat kristalinitas yang semakin baik. ......Thin-film solar cells Cu2ZnSnS4 (CZTS) is considered as a promising alternative material due to the availability in the earth crust. To realize solar cells with reasonable costs, SILAR method is chosen because of its simplicity for CZTS thin film manufacturing process. The purpose of this research is to investigate the influence of anionic immersion time changes to the band gap energy of CZTS. Using 30 immersion cycles, anionic immersion time is varied for 30, 40, 50, and 60 seconds. Annealing treatment was done in non-sulfur and sulfur atmosphere. Non-sulfur annealed sample show a deacreasing band gap energy as increasing anionic immersion time, but increasing after 40 seconds and decreasing again on 60 seconds. In the other hand, sulfur annealed sample show deacreasing band gap energy to 50 seconds but increasing again on 60 seconds. Increasing of immersion time results the decreasing of the band gap energy followed by the increasing of the crystallinity.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53297
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliawati Addawiyah
Abstrak :
Karbon dioksida CO2 merupakan gas yang terbentuk dari hasil pembakaran bahan bakar fosil yang dapat menyebabkan efek rumah kaca. konversi CO2 secara fotokatalitik menggunakan semikonduktor TiO2 merupakan salah satu teknologi konversi terbarukan yang sangat menjanjikan, karena mampu mengubah CO2 menjadi metanol. Namun keterbatasan TiO2 yang hanya dapat menyerap cahaya pada daerah UV menjadi salah satu kendala sehingga perlu dilakukan modifikasi TiO2 agar dapat menggeser daerah serapan hingga ke daerah sinar tampak material quantum dot dan sulfide logam adalah salah satu cara yang dilakukan untuk meningkatkan performa fotokatalitik TiO2.Pada penelitian ini Konversi CO2 menjadi metanol menggunakan sistem CdS-QDSSC termodifikasi zona katalisis dengan elektroda counter TiO2/NiS. TiO2 nanotubes yang ditumbuhkan di atas plat titanium menggunakan metode anodisasi sedangkan modifikasi TiO2 nanotube menjadi TiO2/CdS dan TiO2/NiS menggunakan metode Sucsesive ionic Layer Absorbtion Reaction SILAR . Adapun karakterisasi yang dilakukan adalah scanning electron microscopic-energy diffraction X-ray spectroscopy SEM-EDX untuk mengetahui morfologi permukaan dan komposisi senyawa, diffuse reflectance spectroscopy UV-Vis UV-Vis DRS untuk mengetahui nilai energy celah pita band gap , X-Ray Difraction Spectroscopy XRD untuk mengetahui fasa kristal yang terbentuk, FTIR untuk mengetahui vibrasi ikatan dari molekul, Potensiostat digunakan untuk menguji aktifitas fotokatalitik dan GC-FID digunakan untuk mengidentifikasi senyawa metanol yang dihasilkan dari konversi CO2.Berdasarkan hasil yang diperoleh menunjukan bahwa penggunaan elektroda counter FTO/NiS di zona CdS-QDSSC menghasilkan power konversi effisiensi sebesar 0.25 , sedangkan dengan menggunakan FTO/Pt sebesar 0.11 . dengan sistem CdS-QDSSC termodifikasi zona katalisis menggunakan counter elektroda NiS pada zona katalisis terbukti berhasil menkonversi CO2 menjadi metanol dengan konversi sebanyak 2.20 selama 1 jam penyinaran. ......Carbon dioxide CO2 is a gas formed from the combustion of fossil fuels that could cause the greenhouse effect. CO2 conversion by photo catalytic using semiconductor TiO2 is one of the renewable conversion technology is very promising, because it is able to convert CO2 into methanol. But the limitations of TiO2 which can absorb light in the UV region into one of the obstacles that need to be modified TiO2 in order to shift the absorption area to the area of visible light. quantum dot material and metal sulfide is one of the ways in which to improve the performance of photo catalytic TiO2. In this study the convertion of CO2 to methanol using CdS QDSSC modified catalysis zone with a counter electrode TiO2 NiS. TiO2 nanotubes were grown on titanium plate using anodizing method, while modification TiO2 nanotube to TiO2 CdS and TiO2 NiS used Successive Ionic Layer Absorption Reaction SILAR method. The characterization used is a scanning electron microscopic energy diffraction X ray spectroscopy SEM EDX to determine the surface morphology and composition of the compound, diffuse reflectance spectroscopy, UV Vis UV Vis DRS to determine the value of the band gap energy, X Ray Spectroscopy Diffraction XRD to determine the formed of crystal phases, FTIR to determine the vibration bonding of molecules, potentiostat is used to test the photo catalytic activity and GC FID is used to identify the methanol from CO2 conversion. The results obtained show that power conversion efficiency PCE of 0.25 is use the counter electrode FTO NiS in the CdS QDSSC zone while using FTO Pt power conversion efficiency PCE of 0,11 . the CdS QDSSC modified catalysis zone using counter electrode TiO2 NiS on catalysis zone successfully to convert CO2 into methanol by conversion as much as 2,20 under illumination for 1 hour.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T47820
UI - Tesis Membership  Universitas Indonesia Library
cover
Supriyono
Abstrak :
Berkurangnya sumber bahan bakar fosil dan semakin meningkatnya kebutuhan energi mendorong manusia untuk mencari sumber energi alternatif. Sel surya merupakan salah satu sumber energi alternatif yang ramah lingkungan. Saat ini telah dikembangkan dan dipasarkan sel surya yang berbasis silikon (Si), namun sel surya ini memiliki kelemahan yaitu perakitannya cukup rumit dan biaya pembuatannya mahal sehingga perlu dikembangkan sel surya alternatif jenis lain. Dye sensitized solar cell (DSSC) adalah sel surya alternatif lain yang diperkenalkan oleh O?regan dan Gratzel pada tahun 1991. Namun sel ini juga masih memiliki kelemahan yaitu sensitizer organiknya yang mudah rusak serta effisiensinya yang rendah yaitu dibawah 12%, sehingga diperlukan penyempurnaan. Pada penelitian ini dikembangkan quantum dot sensitized solar cell (QDSSC) yaitu sel surya yang menggunakan sensitizer anorganik / quantum dot yaitu semikonduktor nanopartikel yang memiliki sifat-sifat tertentu. Dengan sensitizer ini diharapkan usia dari sel surya dapat diperpanjang. Sedangkan peningkatan efisiensinya dilakukan dengan memanfaatkan multiple sensitizer dan surface plasmon resonance (SPR) nanopartikel Au. Nanopartikel Au memiliki serapan SPR di daerah visibel sehingga diharapkan dapat meningkatkan serapan terhadap cahaya matahari. QDSSC terdiri dari elektroda kerja TiO2 yang disensitisasi dengan quantum dot (QD) CdS dan PbS serta nanopartikel Au, elektrolit, dan elektroda counter platina. Dalam penelitian ini ditekankan pada modifikasi elektroda kerja TiO2 yaitu dengan menggunakan multiple QD dari dua QD yang memiliki band gap yang berbeda yaitu PbS dan CdS serta ditingkatkan lagi serapannya di daerah visibel dengan memanfaatkan SPR nanopartikel Au. Lapisan TiO2 dibuat dengan metode sol gel dan dideposisikan pada substrat gelas berlapis fluor doped tin oxides (FTO) dengan cara dip coating, selanjutnya Au nanopartikel didepositkan pada permukaan TiO2 dengan menggunakan metode elektrodeposisi (siklik voltammetri). PbS dan CdS QD dibuat dan dideposisikan dengan metode SILAR (successive ionic layer adsorption and reaction). Karakterisasi dari masing-masing lapisan dilakukan dengan menggunakan scanning electron microscopy (SEM), tranmission electron microscopy (TEM), X-Ray Diffaction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), dan uji fotoelektrokimia dengan menggunakan potensiostat dengan elektroda Ag/AgCl sebagai elektroda referens, kawat platinum (Pt) sebagai elektroda counter dan Na2S 0.3M sebagai elektrolit. Selanjutnya uji kinerja sel surya dilakukan dengan menggunakan potensiostat dengan menggunakan sumber cahaya visibel dari lampu halogen 150W, dengan intensitas 3,5 mW/cm2. Berdasarkan hasil pengamatan, terbukti bahwa elektroda kerja FTO/TiO2 dengan adanya Au nanopartikel (FTO/TiO2/Au) berhasil meningkatkan nilai photocurrent 50% (dari 7,5 A/cm2 menjadi 11 A/cm2). Selanjutnya adanya multiple sensitizer PbS dan CdS juga meningkatkan nilai photocurrent dengan nilai 0,190 mA/cm2 untuk FTO/TiO2/CdS, 0,302 mA/cm2 untuk FTO/TiO2/PbS/CdS dan 0,363 mA/cm2 untuk FTO/TiO2/PbS/Pb0,05Cd0,95S/ CdS sehingga adanya multiple QD mampu meningkatkan nilai photocurrent sebesar 91%. Dari uji kinerja diperoleh nilai effisiensi 0,54% untuk FTO/TiO2/CdS, 1,07% untuk FTO/TiO2/PbS/CdS, 1,42% untuk FTO/TiO2/PbS/ Pb0,05Cd0,95S/CdS, dan 1,71% untuk FTO/TiO2/Au/PbS/Pb0,05Cd0,95S/CdS. Dengan demikian pada penelitian ini diperoleh peningkatan efisiensi sekitar 20% pada sel surya yang menggunakan nanopartikel Au dibandingkan dengan yang tanpa nanopartikel Au
The decreasing of fossil fuel resources and the increasing of energy consumption have encouraged people to look for alternative energy sources. The solar cell is one of the alternative energy sources that is environmentally friendly. Currently, silicon-based solar cells (Si) has been successfully developed and marketed, but this solar cell has a disadvantage, in which the assembly is quite complex and costly, so it is in need to develop other types of solar cells. Dye sensitized solar cell is another alternative solar cells introduced by O'Regan and Grätzel in 1991. However, this cell also has the disadvantages, i.e. its organic sensitizers are perishable and low efficiency (under 12%), so it needs further improvements. In this study, an attempt has been elaborated to develop quantum dot sensitized solar cell (solar cells that use inorganic sensitizer/quantum dot). It is expected to extend the life of the sensitizer, while its efficiency can be improved by utilizing surface plasmon resonance (SPR) of Au nanoparticles. Au nanoparticles have the SPR absorption in the visible region which is expected to increase the absorption of the cell. Developed QDSSC consists of TiO2 working electrode sensitized by quantum dot (QD) CdS and PbS and Au nanoparticles, electrolyte, and a platinum counter electrode. This study is focused on modification of TiO2 working electrode by using a multiple semiconductor of two QD which have different band gap, and improved absorption in the visible region by utilizing SPR of Au nanoparticles. TiO2 film was prepared by sol-gel method and deposited on the fluor-doped tin oxides (FTO) substrate by dip coating technique, and Au nanoparticles deposited on the surface of TiO2 using electrodeposition method (cyclic voltammetry). PbS and CdS QD were prepared and deposited by SILAR method (successive ionic layer adsorption and reaction). Characterization of each layer is conducted by using a scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and photoelectrochemical test by using a potentiostat with Ag/AgCl as reference electrode, a platinum wire (Pt) as a counter electrode and a Na2S 0.3M as the electrolyte. Furthermore, the solar cell performance test was conducted by using a potentiostat and visible light source of halogen lamps. Based on the observations, it has been proven that the FTO/TiO2 working electrode with the Au nanoparticles (FTO/TiO2/Au) successfully increase the photocurrent by 50% (from 7.5 A/cm2 to 11 A/cm2). Furthermore, the existence of multiple sensitizer PbS and CdS also increase the photocurrent with a value of 0.190 mA/cm2 for the FTO/TiO2/CdS, 0.302 mA/cm2 for the FTO/TiO2/PbS/CdS, and 0,363 mA/cm2 for the FTO/TiO2/PbS/ Pb0,05Cd0,95S/CdS, so that the multiple QD able to increase the photocurrent of 91%. Solar cell performance test indicated that, the efficiency obtained were 0.54% for the FTO/TiO2/CdS, 1.07% for the FTO/TiO2/PbS/CdS, 1.42% for the FTO/TiO2/PbS/Pb0,05Cd0,95S/CdS and 1.71% for the FTO/TiO2/Au/PbS/Pb0,05Cd0,95S/CdS. Thus, in this study showed an increase in efficiency of about 20% on solar cells using Au nanoparticles as compared to that without Au nanoparticles.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
D2178
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dwiyanti Khairunnisa
Abstrak :
Lapisan tipis Cu2ZnSnS4 (CZTS) telah dipelajari secara mendalam dalam beberapa tahun terakhir karena kelebihannya. Dalam penelitian ini, prekursor CZTS dideposisikan pada substrat stainless steel dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) dan kemudian disulfurisasi pada temperatur 250-400⁰ C selama 30-60 menit untuk menghasilkan lapisan tipis CZTS yang polikristalin. Temperatur dan waktu sulfurisasi dipelajari pengaruhnya terhadap sifat optis. Penelitian ini menunjukkan peningkatan nilai energi celah pita seiring peningkatan waktu sulfurisasi dari 30 menit ke 60 menit dan nilai energi celah pita lapisan tipis bervariasi dari 0,75 sampai 1,55 eV bergantung pada suhu dan waktu sulfurisasi. ......Cu2ZnSnS4 (CZTS) thin films have been extensively studied in recent years for their advantages. In this work, CZTS precursors were prepared on stainless steel substrates by Successive Ionic Layer Adsorption and Reaction (SILAR) method and then sulfurized at temperatures of 250-400⁰C for 30-60 minutes to produce polycrystalline CZTS thin films. The effect of sulfurization temperature and time were studied on the optical properties. This study shows an increase of the band gap energy for increasing sulphurization time from 30min to 60min and the band gap of thin films varies from 0,75 to 1,55 eV depending on sulfurization temperature and time.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53866
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Citraningtyas
Abstrak :
ABSTRAK
Material semikonduktor Cu2ZnSnS4 (CZTS) dikenal sebagai semikonduktor tipe-p dengan energi celah pita ideal dan koefisien penyerapan tinggi untuk lapisan penyerap pada aplikasi sel surya. Fabrikasi menggunakan metode Successive Ionic Layer Adsorption and Reaction (SILAR) menjadi kombinasi yang tepat untuk menghasilkan sel surya berbasis lapisan tipis yang terjangkau dan rendah toksisitas. Siklus pencelupan menjadi salah satu faktor penting proses yang dapat mempengaruhi struktur dan sifat optis lapisan tipis CZTS yang terbentuk pada permukaan substrat. Dengan menggunakan variabel 25, 30, 35, dan 40 siklus, serta perlakuan anil tanpa dan dengan suasana sulfur, penelitian ini melakukan investigasi pengaruhnya terhadap struktur dan sifat optis berupa nilai energi celah pita. Hasil XRD menunjukkan penurunan nilai kristalinitas dengan kenaikan jumlah siklus pencelupan. Topografi permukaan lapisan tipis CZTS hasil SEM menunjukkan adanya retak dan penggumpalan partikel pada permukaan sampel yang diduga sebagai fasa kedua berdasarkan analisis hasil EDX. Nilai energi celah pita pada sampel hasil anil tanpa suasana sulfur dan sampel hasil anil dalam suasana sulfur pun mengalami penurunan seiring dengan peningkatan jumlah siklus pencelupan.
ABSTRACT
Semiconducting Cu2ZnSnS4 (CZTS) material is known as p-type semiconductor which has ideal direct band gap and high absorption coefficient for absorber layer in thin-film solar cells application. Fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method, this could be a promising technique to produce low cost and low toxicity thin-film solar cells. Immersion cycle is one of the important factors in SILAR method that may effect on structure and optical properties of CZTS thin film. By using following variables: 25, 30, 35, and 40 immersion cycles, and annealing treatment in non-sulfur condition and annealing treatment in sulfur condition as well, this investigation focused on their effects to structure and optical properties. The XRD results give decreased crystallinity with the increasing of immersion cycles. Surface topography of CZTS thin film, as the results of SEM examination, indicate the presence of cracks and coalescence particles on the surface of samples, suspected as second phases according to the results of EDX examination. Besides, as the immersion cycles are going up, it leads to decreasing on band gap energy on both annealed samples.
Fakultas Teknik Universitas Indonesia, 2014
S53881
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benny Yogi Handoyo
Abstrak :
Pengujian sistem quantum dots Sensitized Solar Cell dengan menggunakan semikonduktor CdS nanopartikel sebagai dyes telah berhasil dillakukan. CdS nanopartikel dilekatkan dengan metode SILAR (succesive ionic layer adsorption and reaction) pada TiO2 nanotubes yang ditumbuhkan di atas plat titanium dengan metode anodisasi. Karakterisasi yang digunakan adalah FE-SEM untuk mengetahui morfologi permukaan, UV-Vis DR untuk mengetahui band gap TiO2, XRD untuk mengetahui fasa kristal yang terbentuk, FTIR untuk mengetahui vibrasi ikatan dari molekul. Kurva linier sweep voltametry menunjukkan TiO2 aktif pada daerah UV sedangkan CdS/TiO2 aktif pada daerah visible. Dalam uji performa sel untuk mendegradasi fenol didapatkan hasil optimum pada konsentrasi sistem CdS/TiO2 yang disiapkan dari larutan prekursor CdS sebesar 0,020 M dengan % degradasi sebesar 49,225 %. ......Performance testing of quantum dots sensitized solar cell system using CdS semiconductor nanoparticles as dyes have been successfully conducted. The CdS nanoparticles was attached by SILAR (succesive ionic layer adsorption and reaction) method on TiO2 nanotubes, which were grown on titanium plate by anodization method. The characterizations were performed by FE-SEM to determine the surface morphology, UV-Vis DR to determine the band gap of TiO2, XRD to determine the crystalline phase, FTIR to determine the vibration bonding of molecules. The linear sweep voltametry curve showed that TiO2 is active in the UV region while CdS/TiO2 is active in the visible region. Performance test of typical modified DSSC system to degrade phenol indicate that optimum results (% degradation of 49.23 %) was found in a CdS/TiO2 system which was prepared from CdS precursor solution of 0.020 M.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61142
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Dewi Pangestuti
Abstrak :
Pengujian degradasi Rhodamin B dalam sistem Quantum Dot CdS Sensitized Solar Cells QD-CdS-SSC Termodifikasi yang memiliki dua bagian yaitu, zona solar cell dan zona katalisis. Pada zona solar cell, telah berhasil disintesis TiO2 nanotube TiO2 NT band gap 3,2 eV dengan metode anodisasi dan TiO2 nanotube termodifikasi CdS nanopartikel menjadi CdS-TiO2 NT band gap 2,2 eV dengan metode SILAR successive ionic layer adsorption and reaction sehingga aktif pada daerah sinar tampak yang digunakan sebagai sensitizer. Reaksi degradasi Rhodamin B terjadi pada zona katalisis dari perpanjangan plat titanium Ti pada zona solar cell, dengan Pt-Ti sebagai katoda dan N-doped-TiO2 NT sebagai fotoanoda yang disintesis dengan metode anodisasi dari sumber dopan urea. N-doped-TiO2 NT yang dihasilkan memiliki band gap yang lebih rendah daripada TiO2 NT, yaitu sebesar 2,9 eV dan dapat digunakan pada daerah sinar tampak. Karakterisasi terhadap TiO2 NT, N-doped-TiO2 NT dan CdS-TiO2 NT meliputi Scanning Electron Microscope SEM , UV-VIS Diffuse Reflectance Spectrometry DRS , X-ray Diffraction XRD dan Fourier Transform Infra Red FTIR. ......Study on degradation of Rhodamine B in a Quantum Dot CdS Sensitized Solar Cells QD CdS SSC Modified System which has two parts, namely, solar cell zone and cataytic zone. In the solar cell zone, has successfully synthesized TiO2 nanotubes TiO2 NT a band gap of 3.2 eV using anodizing methods and TiO2 nanotubes modified CdS nanoparticles as CdS TiO2 NT band gap of 2.2 eV using SILAR method successive ionic layer adsorption and reaction that is active in visible light region and is used as a sensitizer. The degradation reaction of Rhodamine B occurs in the catalystic zone of extension of the titanium plate Ti from solar cell zone, the Pt Ti as cathode and N doped TiO2 NT as fotoanoda was synthesized by anodizing method of urea as dopant source. N doped TiO2 NT has a lower band gap than TiO2 NT, which amounted to 2.9 eV and can be used in the visible light region. Characterization of TiO2 NT, N doped TiO2 NT and CdS TiO2 NT include Scanning Electron Microscope SEM , UV VIS Diffuse Reflectance Spectrometry DRS , X ray Diffraction XRD and Fourier Transform Infra Red FTIR.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47695
UI - Tesis Membership  Universitas Indonesia Library
cover
Hedi Surahman
Abstrak :
Hidrogen merupakan sumber energi terbarukan dan ramah lingkungan yang sangat potensial untuk menggantikan bahan bakar fosil. Banyak metoda dapat digunakan untuk menghasilkan hidrogen. Pemecahan air secara fotoelektrokimia adalah salah satu metode yang sangat menjanjikan untuk mengkonversi sinar matahari menjadi energi kimia. Dalam penelitian ini, fotokatalis TiO2 nanotube arrays TNTAs tersensitasi CdS nanopartikel diinvestigasi sebagai elektroda dalam sel surya quantum dot sensitized solar cell, QDSSC yang digabung dengan sistem sel fotoelektrokimia PEC dan digunakan sebagai strategi baru untuk produksi hidrogen melalui proses pemecahan air. Dalam risalah laporan disertasi ini disampaikan hasil investigasi terhadap sintesis, karakterisasi, dan aktivitas fotoelektrokatalisis elektroda TiO2 nanotube arrays TNTAs dan elektroda TNTAs tersensitasi CdS nanopartikel. Elektroda TNTAs disintesis dengan metode oksidasi elektrokimia plat titanium dalam larutan etilen glikol. Pengaruh konsentrasi elektrolit, potensial anodisasi, waktu anodisasi, jarak antar elektroda, dan suhu kalsinasi diinvestigasi dalam pekerjaan ini, dengan tujuan untuk memperoleh struktur tubular yang seragam dan rapat sehingga dapat meningkatkan sifat fotokatalitik material TiO2. Sensitizer CdS nanopartikel dideposisikan pada permukaan TNTAs dengan metode succesive ionic layer adsorption and reaction SILAR yang dibantu dengan ultrasonikasi. Pengujian sistem sel gabungan QDSSC-PEC untuk produksi hidrogen dilakukan dengan memvariasikan kondisi percobaan yaitu variasi zona katalisis katoda, variasi konsentrasi hole scavenger dan variasi intensitas cahaya. Hasil karakterisasi memperlihatkan diameter dalam TNTAs meningkat dari 15 nm sampai dengan 80 nm dengan meningkatnya potensial anodisasi dari 15 V sampai dengan 60 V. sementara panjang tabung meningkat dari 2 m menjadi 7,6 m dengan meningkatnya waktu anodisasi dari 15 menit sampai dengan 120 menit pada potensial anodisasi 40 V. Elekroda yang dipreparasi pada kondisi 40 V selama 45 menit dalam elektrolit etilen glikol yang mengandung 0,3 NH4F dan 2 H2O; jarak antar elektroda 1,5 cm; suhu kalsinasi 4500C memperlihatkan struktur tabung yang rapat dan seragam dan mempunyai aktivitas fotokatalisis terbaik dengan efisiensi fotokonversi sebesar 16 dibawah penyinaran sinar UV. Data XPS TNTAs yang disensitasi CdS nanopartikel memperlihatkan komposisi kimia dan chemical state fotokatalis sebagai struktur CdS/TiO2. Hasil pengukuran SEM elektroda CdS/TNTAs yang disintesis menggunakan metode SILAR-ultrasonikasi memperlihatkan CdS tersebar merata di permukaan mulut tabung, bagian dalam dan luar tabung. Dari hasil pengamatan TEM diperoleh ukuran CdS nanopartikel sebesar 6-10 nm. Kurva DRS memperlihatkan nilai band gap sekitar 2,28-2,32 eV yang mengindikasikan keberadaan partikel CdS pada elektroda CdS/TNTAs. Efisiensi fotokonversi CdS/TNTAs dibawah penyinaran sinar tampak sebesar 12,03 , 5 kali lebih besar dibandingkan elektroda TNTAs murni.Hasil pengujian sistem sel gabungan QDSSC-PEC memperlihatkan pembentukan gelembung udara sebagai hidrogen pada katoda dan oksigen pada anoda. Hasil pengukuran kromatografi gas menunjukkan munculnya puncak kromatogram gas hidrogen dan oksigen . Jumlah gas hidrogen yang dihasilkan sangat ditentukan oleh kondisi percobaan yang dilakukan. Kondisi percobaan optimum diperoleh dengan menggunakan katoda Pt/Ti, konsentrasi hole scavenger metanol 20 dan intensitas cahaya 160 mW/cm2. Laju pembentukan gas hidrogen yang terbentuk pada kondisi optimum sebesar 13,44 L/men. Efisiensi energi sel untuk produksi hidrogen melalui proses pemecahan air sebesar 4,78. Dari hasil ini dapat disimpulkan bahwa sel QDSSC-PEC mempunyai potensi yang menjanjikan sebagai strategi baru dalam menghasilkan hidrogen melalui proses pemecahan air secara artificial fotosintesis. ...... Solar hydrogen is a potential renewable energy source and environmentally friendly to replace fossil fuel. Many methods can be used to generate hydrogen. Photoelectrochemical water splitting is one of the most promising methods for convert of solar to chemical energy. In this study, CdS nanoparticles sensitized TiO2 nanotube arrays CdS TNTAs was investigated for use as an electrodes in solar cell systems quantum dot sensitized solar cell, QDSSC which combined with photoelectrochemical cell QDSSC PEC and used as a new strategy for the production of hydrogen through water splitting process. In this dissertation report, we investigated the results of synthesis, characterization and photoelectrochemical activity of TNTAs and CdS TNTAs electrodes. The effect of electrolyte concentration, anodization potential, anodization time, the distance between the electrodes, and the calcination temperature were investigated in this work, with the aim to obtain a high ordered nanotubular structure and have a good photocatalytic activity. The sensitizer of CdS nanoparticles was deposited on the TNTAs surface by successive ionic layer adsorption and reaction SILAR method assisted with ultrasonication technique. The testing of QDSSC PEC cells for hydrogen production is done by varying the experimental conditions that variations of catalysis zone cathode , variation of hole scavenger concentration and light intensity variations. The characterization results showed that the pore diameter of TNTAs increase from 15 nm to 80 nm with increasing anodization potential from 15 to 60 V, while the tube length increase from 2 m to 7.6 m with increasing anodization time from 15 to 120 minutes at 40 V of anodization potential. The TNTAs electrode was prepared at 40V and 45 minutes in the electrolyte of ethylene glycol containing 0.3 NH4F and 2 H2O the distance between the electrodes of 1.5 cm calcinations temperature at 4500C shows a well ordered nanotubular structures with the inner tube diameter was about 80 nm, the tube length was about 5.7 m and have the best photocatalytic activity with the photoconversion efficiency of 16 under UV light illumination. The FE SEM results of CdS TNTAs electrode shows that CdS nanoparticles uniformly decorated on the top surface , inner wall and outer wall TNTAs without clogging at the nanotube mouth. The XPS spectra of CdS sensitized TNTAS electrode shows the chemical composition and chemical state as the CdS and TiO2 structure. The TEM image of the CdS TNTAs shows that CdS nanoparticles were abundantly deposited inside the TNTAs and a crystalline CdS nanoparticles was grown on an anatase TiO2 with particle size of 6 nm. The DRS curve shows the band gap value of about 2.28 to 2.32 eV, indicating the presence of CdS nanoparticles on the CdS TNTAs electrode. The energy photoconversion efficiency of CdS TNTAs was 12.03 under visible light illumination, which five times higher than that of a pure TNTAs electrode. The evaluating results of QDSSC PEC cell showed the formation of air bubbles as hydrogen gas at the cathode and oxygen gas at anode surface. The measurement results of gas chromatography showed the chromatogram peaks of hydrogen and oxygen. The amount of hydrogen gas produced is determined by the experimental conditions conducted. The optimum experimental conditions obtained using Pt Ti cathode, 20 of methanol concentration as hole scavenger and light intensity of 160 mW cm2. The formation rate of hydrogen gas at optimum condition is 13.44 L men. The energy efficiency of cell for hydrogen production from water splitting process is 4.78. This results indicates that the QDSSC PEC cell have promising potential as a new strategy to generate hydrogen, which one may call an artificial photosynthetic water splitting process.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
D2345
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2   >>