Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Wahyu Wibowo Putro
Abstrak :
Peramalan permintaan penjualan telah memainkan peran penting dalam industri tenaga manufaktur. Peramalan permintaan penjualan dalam bisnis diperlukan untuk perencanaan produksi, pengurangan biaya manajemen, tingkat persediaan dan pembelian bahan baku. Banyak badan usaha manufaktur seperti produksi suku cadang rem mobil memerlukan ramalan permintaan penjualan untuk memenuhi kebutuhan produksi. Oleh karena itu, peramalan permintaan penjualan dalam beberapa bulan ke depan sangat diperlukan untuk menjadi acuan dalam menentukan strategi manajemen produksi. Penelitian ini bertujuan untuk memprediksi permintaan penjualan bulanan dalam beberapa bulan mendatang pada pabrik manufaktur yang memproduksi suku cadang rem mobil dengan menggunakan metode Seasonal Autoregressive Integrated Moving Average (SARIMA), Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMAX), dan Rolling SARIMA dengan tipe data musiman per tahun. Studi ini menggunakan data historis bulanan yang dikumpulkan dari perusahaan produksi suku cadang rem dari 01 Januari 2013 hingga 31 Desember 2022 untuk membangun dan mengevaluasi kinerja model. Hasil penelitian menunjukkan bahwa model Rolling SARIMA (1,1,0)(1,1,1)12 memiliki akurasi model terbaik dengan MAPE sebesar 15,77%. Kesimpulan studi menyoroti potensi model untuk mendukung praktik manajemen produksi di pabrik pembuatan suku cadang rem mobil dan pabrik serupa lainnya. ......Sales demand forecasting has played an important role in the electric power manufacturing industry. Sales demand forecasting in business is necessary for production planning, management cost reduction, inventory levels, and the purchase of raw materials. Many manufacturing companies, such as those that produce auto brake parts, require sales demand forecasts to meet production needs. Therefore, forecasting sales demand in the next few months is needed as a reference in determining a production management strategy. This study aims to predict monthly sales demand in the coming months at manufacturing factories that produce car brake parts using the Seasonal Auto-Regressive Integrated Moving Average (SARIMA), the seasonal auto-Regressive Integrated Moving Average with exogenous factors (SARIMAX), and the rolling SARIMA with seasonal data type per year. This study uses monthly historical data collected from brake parts production companies from January 1, 2013 to December 31, 2022 to build and evaluate model performance. The results showed that the Rolling SARIMA (1,1,0) (1,1,1)12 model had the best model accuracy with a MAPE of 15.77%. The study's conclusions highlight the potential of the model to support production management practices in auto brake parts manufacturing plants and other similar factories.
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Afwan Heru Cahya
Abstrak :
Peramalan beban listrik, juga dikenal sebagai Probabilistic Load Forecasting (PLF), memiliki peran penting dalam industri tenaga listrik, terutama dalam merencanakan operasi sistem tenaga, menjaga stabilitas, dan memfasilitasi perdagangan energi. Di Bandar Udara Internasional Soekarno-Hatta yang merupakan sebuah entitas komersial besar, peramalan yang akurat dan andal sangat penting untuk optimalisasi layanan, kepatuhan terhadap regulasi dan meningkatkan akurasi perencanaan konsumsi energi. Tujuan penelitian ini adalah menentukan model peramalan yang akurat untuk digunakan di Bandar Udara Internasional Soekarno-Hatta. Dalam penelitian ini, empat model berbeda diuji: Seasonal Autoregressive Integrated Moving Average (SARIMA), Seasonal Autoregressive Integrated Moving Average with Exogenous (SARIMAX), serta dua model berbasis neural network, yaitu Long Short-Term Memory (LSTM) dan Gated Recurrent Units (GRU). Kemudian model ini diterapkan pada data historis harian yang dikumpulkan dari perusahaan operator bandar udara dengan rentang waktu 01 Januari 2022 hingga 31 Desember 2022. Hasil penelitian menunjukkan bahwa model LSTM mencapai performa terbaik dalam melakukan peramalan, dengan Mean Absolute Error (MAE) 12.79, Root Mean Square Error (RMSE) 15.47, dan Mean Absolute Percentage Error (MAPE) 1.91%. Sehingga berdasarkan hasil penelitian, model LSTM dapat digunakan untuk meningkatkan akurasi perencanaan konsumsi listrik harian di Bandar Udara Internasional Soekarno-Hatta dan fasilitas serupa lainnya. ......Electric load forecasting, also known as Probabilistic Load Forecasting (PLF), plays a crucial role in the electricity industry, particularly in planning power system operations, maintaining stability, and facilitating energy trading. At Soekarno-Hatta International Airport, which is a large commercial entity, accurate and reliable forecasting is essential for service optimization, regulatory compliance, and improving the accuracy of energy consumption planning. The aim of this study is to identify an accurate forecasting model to be used at Soekarno-Hatta International Airport. In this study, four different models were tested: Seasonal Autoregressive Integrated Moving Average (SARIMA), SARIMA with Exogenous (SARIMAX), and two neural network-based models, Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). The models were subsequently utilized on the daily historical data gathered by the airport operating firm from January 1, 2022, to December 31, 2022. The research findings demonstrated that the LSTM model was the most effective in terms of forecasting performance, with Mean Absolute Error (MAE) of 12.79, Root Mean Square Error (RMSE) of 15.47, and Mean Absolute Percentage Error (MAPE) of 1.91%. Therefore, based on the research findings, the LSTM model can be used to improve the accuracy of daily electricity consumption planning at Soekarno-Hatta International Airport and other similar facilities.
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhany Harmeidy Barus
Abstrak :
Pembangkit Listrik Tenaga Bayu (PLTB) merupakan salah satu energi terbarukan yang cukup populer dan sudah banyak dikembangkan karena kelebihannya sebagai energi bersih, berbahan bakar murah, serta biaya investasinya yang cenderung semakin ekonomis. Tetapi di sisi lain PLTB termasuk pembangkit bersifat intermiten yang disebabkan adanya fluktuasi alami (variability) dan kesalahan prediksi (uncertainty) dari daya keluaran PLTB tersebut. Kondisi ini berpotensi menyebabkan gangguan sistem serta pemadaman listrik konsumen yang cukup besar, bahkan sampai terjadi blackout. Untuk itu diperlukan model integrasi PLTB yang tepat dalam menentukan kebutuhan tambahan cadangan operasi yang optimal sebagai antisipasi sifat intermiten PLTB tersebut, sehingga sistem tenaga listrik dapat tetap beroperasi secara andal dan ekonomis. Penelitian ini bertujuan menentukan model algoritma untuk menghitung kebutuhan tambahan cadangan operasi harian yang dinamis dan optimal pada integrasi PLTB di sistem Sulawesi bagian Selatan (Sulbagsel). Dengan menggunakan usulan algoritma Multi-Stage Statistical Approach (MSSA) maka dapat diketahui karakteristik daya keluaran PLTB pada sistem Sulbagsel. Kemudian hasil analisa tersebut diolah dengan menggunakan usulan algoritma Seasonal Daily Variability and Uncertainty (SDVU) berbasis Hybrid Artificial Intelligence (Hybrid AI) untuk memprediksi pola variability dan uncertainty dari data yang ada untuk menghitung parameter Dynamic Confidence Level (DCL). Hasil DCL tersebut kemudian digunakan untuk menghitung kebutuhan optimal tambahan cadangan operasi harian yang dibutuhkan. Dari beberapa alternatif Hybrid AI yang digunakan, diketahui bahwa kombinasi Seasonal Auto Regressive Moving Average (SARIMA) dan Long Short-Term Memory (LSTM) menghasilkan prediksi yang paling akurat dan konsisten, baik untuk data variability maupun uncertainty. Dampak signifikan dari penelitian ini ditunjukkan dengan adanya potensi penghematan biaya bahan bakar pembangkit rata-rata sekitar 250 milyar rupiah per tahun untuk kebutuhan tambahan cadangan operasi saat dibandingkan dengan metoda eksisting yang menggunakan parameter Static Confidence Level (SCL) dengan tingkat keandalan yang sama. ......Wind Power Plant (WPP) is part of renewable energy which is quite popular and has been widely developed due to its advantages as clean energy, cheap fuel, and decreasing trend of its investment cost. But on the other hand, WPP is part of Variable Renewable Energy (VRE) due to natural fluctuation (variability) and forecast errors (uncertainty) of the wind power output. This situation has the potential to cause significant system disturbance and costumer power outages, even blackouts. For this reason, a WPP integration model is needed in determining the optimum operational operating reserve to anticipate of the intermittent nature of the WPP, so that the electric power system can be operated reliably and economically. This study aims to determine the algorithm model to calculate the need for additional dynamic and optimal daily operational reserves for the integration of WPP in the Southern Sulawesi power system. By using the first proposed method, Multi-Stage Statistical Approach (MSSA) algorithm, the characteristics of the wind power output can be discovered. Then the results of the analysis are processed using the second proposed method, Seasonal Daily Variability and Uncertainty (SDVU) algorithm based on Hybrid Artificial Intelligence (Hybrid AI) to forecast variability and uncertainty patterns of the observed data in calculating Dynamic Confidence Level (DCL) parameters. The DCL results are then used to determine the optimal daily additional operating reserve. Among the Hybrid AI variants, it is concluded that the combination of Seasonal Auto Regressive Moving Average (SARIMA) and Long Short-Term Memory (LSTM) produces the most accurate and consistent forecast, both for variability and uncertainty data. The significant impact of this research is indicated by the potential cost savings of around 250 billion rupiah per year on average for additional operational reserves when compared to the existing method using Static Confidence Level (SCL) parameters with the same level of reliability.
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sri Mulyono
Abstrak :
This article attempts to socialize Box-Jenkins method (ARIMA model) for forecasting. Steps in using the method are model identification, estimation, diagnostic checking (testing) and forecasting. It also introduces variation of the method such as ARIMA which consider seasonal factor (SARIMA model) and combination between regression and ARIMA model (MARMA model). In the last part, It shows how to forecast composite stock price index in Jakarta Stock Exchange and nominal exchange rate of Rupiah per US dollar using the method.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2000
EFIN-XLVIII-2-Juni2000-125
Artikel Jurnal  Universitas Indonesia Library